Advertisement

Journal of Electronic Materials

, Volume 47, Issue 3, pp 1916–1923 | Cite as

Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

  • Swaleha Naseem
  • Shakeel Khan
  • Shahid Husain
  • Wasi KhanEmail author
Article

Abstract

This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers–Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell–Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

Keywords

Perovskite nanoparticles reverse micelle technique Rietveld refinement TEM dielectric properties ferromagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Swaleha Naseem is deeply indebted to the University Grants Commission (UGC), India for providing the Maulana Azad National Fellowship [F117.1/201415/MANF-201415-MUS-UTT-33700/(SAIII/Website)]. The authors express thanks to Dr. Irshad Ahmad Bhat for helping in this work. The authors are also thankful to the University Sophisticated Instrument Facility (USIF), Aligarh Muslim University, Aligarh, for the microscopy facilities.

References

  1. 1.
    T. Liu and Y. Xu, Mater. Chem. Phys. 129, 1047 (2011).CrossRefGoogle Scholar
  2. 2.
    D. Wang and M. Gong, J. Appl. Phys. 109, 114304 (2011).CrossRefGoogle Scholar
  3. 3.
    Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura, Nat. Mater. 8, 558 (2009).CrossRefGoogle Scholar
  4. 4.
    J.B. Huarac, D.D. Diestra, M. Bsatee, J. Wang, W.M. Jadwisienczak, B.R. Weiner, and G. Morell, Nanotechnology 27, 85703 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Falcón, A.E. Goeta, G. Punte, and R.E. Carbonio, J. Solid State Chem. 133, 379 (1997).CrossRefGoogle Scholar
  6. 6.
    W.C. Koehler, E.O. Wollan, and M.K. Wilkinson, Phys. Rev. 118, 58 (1960).CrossRefGoogle Scholar
  7. 7.
    P. De Gennes, Phys. Rev. 118, 141 (1960).CrossRefGoogle Scholar
  8. 8.
    J. Mizusaki, T. Sasamoto, W.R. Cannon, and H.K. Bowen, J. Am. Ceram. Soc. 65, 363 (1982).CrossRefGoogle Scholar
  9. 9.
    H.Y. Hwang, S.W. Choeng, R.G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 3 (1995).CrossRefGoogle Scholar
  10. 10.
    I. Bhat, S. Husain, W. Khan, and S.I. Patil, Mater. Res. Bull. 48, 4506 (2013).CrossRefGoogle Scholar
  11. 11.
    A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.F.P. Graca, and M.A. Valente, Chem. Phys. Lett. 637, 7 (2015).CrossRefGoogle Scholar
  12. 12.
    G.E. Pike, Phys. Rev. B 6, 1572 (1972).CrossRefGoogle Scholar
  13. 13.
    C.W. Lee, R.K. Behera, S. Okamoto, R. Devanathan, E.D. Wachsman, S.R. Phillpot, and S.B. Sinnott, J. Am. Ceram. Soc. 94, 1931 (2011).CrossRefGoogle Scholar
  14. 14.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, and M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878 (2017).CrossRefGoogle Scholar
  15. 15.
    O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, North Holl Phys Publ Elsevier (1986), pp. 1–6.Google Scholar
  16. 16.
    K. Huang, H.Y. Lee, and J.B. Goodenough, J. Electrochem. Soc. 145, 3220 (1998).CrossRefGoogle Scholar
  17. 17.
    N. Kemik, Y. Takamura, and A. Navrotsky, J. Solid State Chem. 184, 2118 (2011).CrossRefGoogle Scholar
  18. 18.
    S.S. Maluf, E.Y. Tanabe, P.A.P. Nascente, and E.M. Assaf, Top. Catal. 54, 210 (2011).CrossRefGoogle Scholar
  19. 19.
    K. Li, D. Wang, F. Wu, T. Xie, and T. Li, Mater. Chem. Phys. 64, 269 (2000).CrossRefGoogle Scholar
  20. 20.
    S. Naseem, W. Khan, B.R. Singh, and A.H. Naqvi, AIP Conf. Proc. 1665, 050048-3 (2015).Google Scholar
  21. 21.
    M.A. Omar, Elementary Solid State Physics: Principles and Applications (Boston: Addison-Wesley, 1975).Google Scholar
  22. 22.
    S. Husain, I. Bhat, W. Khan, and L. Al-Khataby, Solid State Commun. 157, 29–33 (2013).CrossRefGoogle Scholar
  23. 23.
    A. Seeger, P. Lunkenheimer, J. Hemberger, A.A. Mukhin, V.Y. Ivanov, A.M. Balbashov, and A. Loidl, J. Phys.: Condens. Matter 11, 3273 (1999).Google Scholar
  24. 24.
    A.K. Jonscher, Dielectric Relaxations in Solids (London: Chelsea Dielectrics Press, 1983).Google Scholar
  25. 25.
    J.R. Macdonald, Impedence Spectroscopy (New York: Wiley, 1987).Google Scholar
  26. 26.
    M. Viret, L. Ranno, and J.M.D. Coey, Phys. Rev. B 55, 8067–8070 (1997).CrossRefGoogle Scholar
  27. 27.
    J.C. Maxwell, Electricity and Magnetism (New York: Oxford University Press, 1973).Google Scholar
  28. 28.
    S.M. Khetre, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, and S.R. Bamane, Adv. Appl. Sci. Res. 2, 503 (2011).Google Scholar
  29. 29.
    A.K. Jonscher, © 1977 Nature Publishing Group. Nature 267, 673 (1977).CrossRefGoogle Scholar
  30. 30.
    W.K. Lee, J.F. Liu, and A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1991).CrossRefGoogle Scholar
  31. 31.
    A.S. Nowick, A.V. Vaysleyb, and B.S. Lim, J. Appl. Phys. 76, 4429 (1994).CrossRefGoogle Scholar
  32. 32.
    J. Sichelschmidt, M. Paraskevopoulos, M. Brando, R. When, D. Ivannikov, F. Mayr, K. Pucher, J. Hemberger, A. Pimenov, H.A.K. Nidda, P. Lunkenheimer, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, and A. Loidl, Eur. Phys. J. B 20, 7 (2001).CrossRefGoogle Scholar
  33. 33.
    A. Levstik, C. Filipič, V. Bobnar, S. Drnovsek, J. Holc, Z. Trontelj, and Z. Jaglicic, Solid State Commun. 150, 1249 (2010).CrossRefGoogle Scholar
  34. 34.
    V.R. Kumar and N. Veeraiah, J. Phys. Chem. Solids 59, 91 (1997).CrossRefGoogle Scholar
  35. 35.
    A.R. Long, Adv. Phys. 31, 553 (1982).CrossRefGoogle Scholar
  36. 36.
    A. Levstik, C. Filipič, V. Bobnar, A. Potocnik, D. Arcon, S. Drnovsek, and J. Holc, Phys. Rev. B Condens. Matter. Mater. Phys. 79, 1 (2009).CrossRefGoogle Scholar
  37. 37.
    S. Komine and E. Iguchi, J. Phys. Chem. Solids 68, 1504 (2007).CrossRefGoogle Scholar
  38. 38.
    S. Patel, A. Chauhan, and R. Vaish, J. Appl. Phys. 115, 084908 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, and M.M. Hassan, Acta Mater. 59, 1338 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Swaleha Naseem
    • 1
  • Shakeel Khan
    • 1
  • Shahid Husain
    • 2
  • Wasi Khan
    • 2
    Email author
  1. 1.Department of Applied Physics, Z.H. College of Engineering and TechnologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of PhysicsAligarh Muslim University AligarhIndia

Personalised recommendations