Advertisement

Journal of Electronic Materials

, Volume 47, Issue 3, pp 1896–1903 | Cite as

Electrochemical, Structural and Magnetic Analysis of Electrodeposited CoCu/Cu Multilayers: Influence of Cu Layer Deposition Potential

  • Atakan TekgülEmail author
  • Hakan Kockar
  • Hilal Kuru
  • Mürsel Alper
  • C. Gökhan ÜnlÜ
Article

Abstract

The electrochemical, structural and magnetic properties of CoCu/Cu multilayers electrodeposited at different cathode potentials were investigated from a single bath. The Cu layer deposition potentials were selected as \(-\,0.3,\,\hbox {V}\) \(-\,0.4\,\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) with respect to saturated calomel electrode (SCE) while the Co layer deposition potential was constant at \(-\,1.5\,\hbox {V}\) versus SCE. For the electrochemical analysis, the current-time transients were obtained. The amount of noble non-magnetic (Cu) metal materials decreased with the increase of deposition potentials due to anomalous codeposition. Further, current-time transient curves for the Co layer deposition and capacitance were calculated. In the structural analysis, the multilayers were found to be polycrystalline with both Co and Cu layers adopting the face-centered cubic structure. The (111) peak shifts towards higher angle with the increase of the deposition potentials. Also, the lattice parameters of the multilayers decrease from 0.3669 nm to 0.3610 nm with the increase of the deposition potentials from \(-\,0.3\,\hbox {V}\) to \(-\,0.5\,\hbox {V}\), which corresponds to the bulk values of Cu and Co, respectively. The electrochemical and structural results demonstrate that the amount of Co atoms increased and the Cu atoms decreased in the layers with the increase of deposition potentials due to anomalous codeposition. For magnetic measurements, the saturation magnetizations, \(M_s\) obtained from the magnetic curves of the multilayers were obtained as 212 kA/m, 276 kA/m, and 366 kA/m with \(-\,0.3\,\hbox {V}\), \(-\,0.4\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) versus SCE, respectively. It is seen that the \(M_s\) values increased with the increase of the deposition potentials confirming the increase of the Co atoms and decrease of the Cu amount. The results of electrochemical and structural analysis show that the deposition potentials of non-magnetic layers plays important role on the amount of magnetic and non-magnetic materials in the layers and thus on the magnetic properties of the multilayers.

Keywords

CoCu/Cu multilayer electrodeposition anomalous codeposition electrochemical properties structural properties magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yamada, T. Houga, and Y. Ueda, J. Magn. Magn. Mater. 239(13), 272 (2002).  https://doi.org/10.1016/S0304-8853(01)00569-8 CrossRefGoogle Scholar
  2. 2.
    Á. CzirÁki, L. Péter, B. Arnold, J. Thomas, H. Bauer, K. Wetzig, and I. Bakonyi, Thin Solid Films 424(2), 229 (2003).  https://doi.org/10.1016/S0040-6090(02)01126-4 CrossRefGoogle Scholar
  3. 3.
    V. Weihnacht, L. Pter, J. Tth, J. Pdr, Z. Kerner, C.M. Schneider, and I. Bakonyi, J. Electrochem. Soc. 150(8), C507 (2003).  https://doi.org/10.1149/1.1583716 CrossRefGoogle Scholar
  4. 4.
    Y. Hayashi, C.G. Lee, B.H. Koo, T. Sato, M. Arita, and M. Masuda, Phys. Status Solidi (a), 201(8), 1658 (2004).  https://doi.org/10.1002/pssa.200304643 CrossRefGoogle Scholar
  5. 5.
    A.A. Pasa and W. Schwarzacher, Phys. Status Solidi (a) 173(1), 73 (1999).  https://doi.org/10.1002/(SICI)1521-396X(199905)173:1<73::AID-PSSA73>3.0.CO;2-8
  6. 6.
    Y. Ueda, T. Houga, H. Zaman, and A. Yamada, J. Solid Stat. Chem. 147(1), 274 (1999).  https://doi.org/10.1006/jssc.1999.8271 CrossRefGoogle Scholar
  7. 7.
    E. Toth Kadar, L. Peter, T. Becsei, and W. Schwarzacher, J. Electrochem. Soc. 147(9), 3311 (2000).  https://doi.org/10.1149/1.1393900 CrossRefGoogle Scholar
  8. 8.
    D.H. Mosca, F. Petroff, A. Fert, P.A. Schroeder, W.P. Pratt, and R. Laloee, J. Magn. Magn. Mater. 94(1–2), L1 (1991).  https://doi.org/10.1016/0304-8853(91)90102-G CrossRefGoogle Scholar
  9. 9.
    M. Tsunoda, H. Arai, D. Takahashi, S. Miura, and M. Takahashi, J. Magn. Magn. Mater. 240(1–3), 189 (2002).  https://doi.org/10.1016/S0304-8853(01)00753-3 CrossRefGoogle Scholar
  10. 10.
    M. Chen, C.L. Chien, and P.C. Searson, Chem. Mater. 18(6), 1595 (2006).  https://doi.org/10.1021/cm052262b CrossRefGoogle Scholar
  11. 11.
    M. Darques, A.S. Bogaert, F. Elhoussine, S. Michotte, J. de la Torre Medina, A. Encinas, and L. Piraux, J. Phys. D Appl. Phys. 39(23), 5025 (2006).  https://doi.org/10.1088/0022-3727/39/23/019 CrossRefGoogle Scholar
  12. 12.
    B.G. Toth, L. Peter, L. Pogany, A. Revesz, and I. Bakonyi, J. Electrochem. Soc. 161(4), D154 (2014).  https://doi.org/10.1149/2.053404jes CrossRefGoogle Scholar
  13. 13.
    A. Correia and S. Machado, Electrochim. Acta 45(11), 1733 (2000).  https://doi.org/10.1016/S0013-4686(99)00405-3 CrossRefGoogle Scholar
  14. 14.
    A. Ramazani, M. Ghaffari, M.A. Kashi, F. Kheiry, and F. Eghbal, J. Phys. D Appl. Phys. 47(35), 355003 (2014).  https://doi.org/10.1088/0022-3727/47/35/355003 CrossRefGoogle Scholar
  15. 15.
    M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes, and W. Schwarzacher, Appl. Phys. Lett. 63(15), 2144 (1993).  https://doi.org/10.1063/1.110567 CrossRefGoogle Scholar
  16. 16.
    I. Bakonyi and L. Peter, Prog. Mater. Sci. 55(3), 107 (2010).  https://doi.org/10.1016/j.pmatsci.2009.07.001 CrossRefGoogle Scholar
  17. 17.
    W.R.A. Meuleman, S. Roy, L. Peter, and I. Bakonyi, J. Electrochem. Soc. 151(4), C256 (2004).  https://doi.org/10.1149/1.1649754 CrossRefGoogle Scholar
  18. 18.
    H. Kuru, H. Kockar, M. Alper, and O. Karaagac, J. Magn. Magn. Mater. 377, 59 (2015).  https://doi.org/10.1016/j.jmmm.2014.10.058 CrossRefGoogle Scholar
  19. 19.
    S.S. Mahshid and A. Dolati, J. Nanosci. Nanotechnol. 10(9), 5964 (2010).  https://doi.org/10.1166/jnn.2010.2593
  20. 20.
    M. Haciismailoglu, M. Alper, and H. Kockar, Sens. Lett. 11(1), 106 (2013).  https://doi.org/10.1166/sl.2013.2798 CrossRefGoogle Scholar
  21. 21.
    H. Kockar, E. Ozergin, O. Karaagac, and M. Alper, J. Mater. Sci. Mater. Electron. 24, 2562 (2013).  https://doi.org/10.1007/s10854-013-1134-1 CrossRefGoogle Scholar
  22. 22.
    M. Safak, M. Alper, and H. Kockar, J. Nanosci. Nanotechnol. 8(2), 854 (2008).  https://doi.org/10.1166/jnn.2008.B242 CrossRefGoogle Scholar
  23. 23.
    Q.X. Liu, L. Péter, J. Tóth, L.F. Kiss, a. Cziráki, and I. Bakonyi, J. Magn. Magn. Mater. 280, 60 (2004).  https://doi.org/10.1016/j.jmmm.2004.02.031
  24. 24.
    M. Safak, M. Alper, and H. Kockar, J. Magn. Magn. Mater. 304(2), E784 (2006).  https://doi.org/10.1016/j.jmmm.2006.02.223 CrossRefGoogle Scholar
  25. 25.
    L. Peter, Q.X. Liu, Z. Kerner, and I. Bakonyi, Electrochim. Acta 49(9–10), 1513 (2004).  https://doi.org/10.1016/j.electacta.2003.11.017 CrossRefGoogle Scholar
  26. 26.
    A. Dolati, M. Sababi, E. Nouri, and M. Ghorbani, Mater. Chem. Phys. 102(23), 118 (2007).  https://doi.org/10.1016/j.matchemphys.2006.07.009 CrossRefGoogle Scholar
  27. 27.
    B.G. Toth, L. Peter, J. Degi, A. Revesz, D. Oszetzky, G. Molnar, and I. Bakonyi, J. Electrochem. Soc. 91, 122 (2013).  https://doi.org/10.1016/j.electacta.2012.12.033 Google Scholar
  28. 28.
    A. Taylor and R. Floyd, Acta Crystallogr. 3(4), 285 (1950).  https://doi.org/10.1107/S0365110X50000732 CrossRefGoogle Scholar
  29. 29.
    D. Jiles, Introduction to Magnetism and Magnetic Materials, (Chapmanand Hall, London, 1991).  https://doi.org/10.1007/978-1-4615-3868-4 Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Physics Department, Science and Literature FacultyUludag UniversityBursaTurkey
  2. 2.Physics Department, Science FacultyAkdeniz UniversityAntalyaTurkey
  3. 3.Physics Department, Science and Literature FacultyBalıkesir UniversityBalıkesirTurkey
  4. 4.Department of Biomedical EngineeringPamukkale UniversityDenizliTurkey

Personalised recommendations