Journal of Electronic Materials

, Volume 47, Issue 3, pp 1896–1903 | Cite as

Electrochemical, Structural and Magnetic Analysis of Electrodeposited CoCu/Cu Multilayers: Influence of Cu Layer Deposition Potential

  • Atakan TekgülEmail author
  • Hakan Kockar
  • Hilal Kuru
  • Mürsel Alper
  • C. Gökhan ÜnlÜ


The electrochemical, structural and magnetic properties of CoCu/Cu multilayers electrodeposited at different cathode potentials were investigated from a single bath. The Cu layer deposition potentials were selected as \(-\,0.3,\,\hbox {V}\) \(-\,0.4\,\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) with respect to saturated calomel electrode (SCE) while the Co layer deposition potential was constant at \(-\,1.5\,\hbox {V}\) versus SCE. For the electrochemical analysis, the current-time transients were obtained. The amount of noble non-magnetic (Cu) metal materials decreased with the increase of deposition potentials due to anomalous codeposition. Further, current-time transient curves for the Co layer deposition and capacitance were calculated. In the structural analysis, the multilayers were found to be polycrystalline with both Co and Cu layers adopting the face-centered cubic structure. The (111) peak shifts towards higher angle with the increase of the deposition potentials. Also, the lattice parameters of the multilayers decrease from 0.3669 nm to 0.3610 nm with the increase of the deposition potentials from \(-\,0.3\,\hbox {V}\) to \(-\,0.5\,\hbox {V}\), which corresponds to the bulk values of Cu and Co, respectively. The electrochemical and structural results demonstrate that the amount of Co atoms increased and the Cu atoms decreased in the layers with the increase of deposition potentials due to anomalous codeposition. For magnetic measurements, the saturation magnetizations, \(M_s\) obtained from the magnetic curves of the multilayers were obtained as 212 kA/m, 276 kA/m, and 366 kA/m with \(-\,0.3\,\hbox {V}\), \(-\,0.4\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) versus SCE, respectively. It is seen that the \(M_s\) values increased with the increase of the deposition potentials confirming the increase of the Co atoms and decrease of the Cu amount. The results of electrochemical and structural analysis show that the deposition potentials of non-magnetic layers plays important role on the amount of magnetic and non-magnetic materials in the layers and thus on the magnetic properties of the multilayers.


CoCu/Cu multilayer electrodeposition anomalous codeposition electrochemical properties structural properties magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yamada, T. Houga, and Y. Ueda, J. Magn. Magn. Mater. 239(13), 272 (2002). CrossRefGoogle Scholar
  2. 2.
    Á. CzirÁki, L. Péter, B. Arnold, J. Thomas, H. Bauer, K. Wetzig, and I. Bakonyi, Thin Solid Films 424(2), 229 (2003). CrossRefGoogle Scholar
  3. 3.
    V. Weihnacht, L. Pter, J. Tth, J. Pdr, Z. Kerner, C.M. Schneider, and I. Bakonyi, J. Electrochem. Soc. 150(8), C507 (2003). CrossRefGoogle Scholar
  4. 4.
    Y. Hayashi, C.G. Lee, B.H. Koo, T. Sato, M. Arita, and M. Masuda, Phys. Status Solidi (a), 201(8), 1658 (2004). CrossRefGoogle Scholar
  5. 5.
    A.A. Pasa and W. Schwarzacher, Phys. Status Solidi (a) 173(1), 73 (1999).<73::AID-PSSA73>3.0.CO;2-8
  6. 6.
    Y. Ueda, T. Houga, H. Zaman, and A. Yamada, J. Solid Stat. Chem. 147(1), 274 (1999). CrossRefGoogle Scholar
  7. 7.
    E. Toth Kadar, L. Peter, T. Becsei, and W. Schwarzacher, J. Electrochem. Soc. 147(9), 3311 (2000). CrossRefGoogle Scholar
  8. 8.
    D.H. Mosca, F. Petroff, A. Fert, P.A. Schroeder, W.P. Pratt, and R. Laloee, J. Magn. Magn. Mater. 94(1–2), L1 (1991). CrossRefGoogle Scholar
  9. 9.
    M. Tsunoda, H. Arai, D. Takahashi, S. Miura, and M. Takahashi, J. Magn. Magn. Mater. 240(1–3), 189 (2002). CrossRefGoogle Scholar
  10. 10.
    M. Chen, C.L. Chien, and P.C. Searson, Chem. Mater. 18(6), 1595 (2006). CrossRefGoogle Scholar
  11. 11.
    M. Darques, A.S. Bogaert, F. Elhoussine, S. Michotte, J. de la Torre Medina, A. Encinas, and L. Piraux, J. Phys. D Appl. Phys. 39(23), 5025 (2006). CrossRefGoogle Scholar
  12. 12.
    B.G. Toth, L. Peter, L. Pogany, A. Revesz, and I. Bakonyi, J. Electrochem. Soc. 161(4), D154 (2014). CrossRefGoogle Scholar
  13. 13.
    A. Correia and S. Machado, Electrochim. Acta 45(11), 1733 (2000). CrossRefGoogle Scholar
  14. 14.
    A. Ramazani, M. Ghaffari, M.A. Kashi, F. Kheiry, and F. Eghbal, J. Phys. D Appl. Phys. 47(35), 355003 (2014). CrossRefGoogle Scholar
  15. 15.
    M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes, and W. Schwarzacher, Appl. Phys. Lett. 63(15), 2144 (1993). CrossRefGoogle Scholar
  16. 16.
    I. Bakonyi and L. Peter, Prog. Mater. Sci. 55(3), 107 (2010). CrossRefGoogle Scholar
  17. 17.
    W.R.A. Meuleman, S. Roy, L. Peter, and I. Bakonyi, J. Electrochem. Soc. 151(4), C256 (2004). CrossRefGoogle Scholar
  18. 18.
    H. Kuru, H. Kockar, M. Alper, and O. Karaagac, J. Magn. Magn. Mater. 377, 59 (2015). CrossRefGoogle Scholar
  19. 19.
    S.S. Mahshid and A. Dolati, J. Nanosci. Nanotechnol. 10(9), 5964 (2010).
  20. 20.
    M. Haciismailoglu, M. Alper, and H. Kockar, Sens. Lett. 11(1), 106 (2013). CrossRefGoogle Scholar
  21. 21.
    H. Kockar, E. Ozergin, O. Karaagac, and M. Alper, J. Mater. Sci. Mater. Electron. 24, 2562 (2013). CrossRefGoogle Scholar
  22. 22.
    M. Safak, M. Alper, and H. Kockar, J. Nanosci. Nanotechnol. 8(2), 854 (2008). CrossRefGoogle Scholar
  23. 23.
    Q.X. Liu, L. Péter, J. Tóth, L.F. Kiss, a. Cziráki, and I. Bakonyi, J. Magn. Magn. Mater. 280, 60 (2004).
  24. 24.
    M. Safak, M. Alper, and H. Kockar, J. Magn. Magn. Mater. 304(2), E784 (2006). CrossRefGoogle Scholar
  25. 25.
    L. Peter, Q.X. Liu, Z. Kerner, and I. Bakonyi, Electrochim. Acta 49(9–10), 1513 (2004). CrossRefGoogle Scholar
  26. 26.
    A. Dolati, M. Sababi, E. Nouri, and M. Ghorbani, Mater. Chem. Phys. 102(23), 118 (2007). CrossRefGoogle Scholar
  27. 27.
    B.G. Toth, L. Peter, J. Degi, A. Revesz, D. Oszetzky, G. Molnar, and I. Bakonyi, J. Electrochem. Soc. 91, 122 (2013). Google Scholar
  28. 28.
    A. Taylor and R. Floyd, Acta Crystallogr. 3(4), 285 (1950). CrossRefGoogle Scholar
  29. 29.
    D. Jiles, Introduction to Magnetism and Magnetic Materials, (Chapmanand Hall, London, 1991). Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Physics Department, Science and Literature FacultyUludag UniversityBursaTurkey
  2. 2.Physics Department, Science FacultyAkdeniz UniversityAntalyaTurkey
  3. 3.Physics Department, Science and Literature FacultyBalıkesir UniversityBalıkesirTurkey
  4. 4.Department of Biomedical EngineeringPamukkale UniversityDenizliTurkey

Personalised recommendations