Advertisement

Journal of Electronic Materials

, Volume 47, Issue 3, pp 1832–1846 | Cite as

Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

  • Hsien-Chie Cheng
  • You-Wei Chen
  • Wen-Hwa ChenEmail author
  • Su-Tsai Lu
  • Shih-Ming Lin
Article

Abstract

In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the “off process” and from the blanket to the substrate in the “set process” is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

Keywords

Gravure-offset printing contact angle ink transfer performance solvent content Surface Evolver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pudas, J. Hagberg, and S. Leppävuori, IEEE. Trans. Electron. Packag. Manuf. 25, 335 (2002).CrossRefGoogle Scholar
  2. 2.
    M. Pudas, J. Hagberg, and S. Leppävuori, Prog. Org. Coat. 49, 324 (2004).CrossRefGoogle Scholar
  3. 3.
    T.-M. Lee, J.-H. Noh, C.H. Kim, J. Jo, and D.-S. Kim, Thin Solid Films 518, 3355 (2010).CrossRefGoogle Scholar
  4. 4.
    N. Choi, H. Wee, S. Namc, J. Lavelle, and M. Hatalis, Microelectron. Eng. 91, 93 (2012).CrossRefGoogle Scholar
  5. 5.
    J. Hagberg, M. Pudas, S. Leppavouri, K. Elsey, and A. Logan, Microelectron. Int. 18, 32 (2001).CrossRefGoogle Scholar
  6. 6.
    E. Hrehorova, M. Rebros, A. Pekarovicova, B. Bazuin, and A. Ranganathan, J. Disp. Technol. 7, 318 (2011).CrossRefGoogle Scholar
  7. 7.
    I. Jung, Y.H. Jo, I. Kim, and H.M. Lee, J. Electron. Mater. 41, 115 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Ryu, H.-S. Kim, and H.T. Hahn, J. Electron. Mater. 40, 42 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Ortega, B. Park, and N.S. Kim, J. Electron. Mater. 44, 778 (2015).CrossRefGoogle Scholar
  10. 10.
    S.-H. Kim, J. Engel, C. Liu, and D.L. Jones, J. Micromech. Microeng. 15, 912 (2005).CrossRefGoogle Scholar
  11. 11.
    J. Engel, J. Chen, and C. Liu, J. Micromech. Microeng. 13, 359 (2003).CrossRefGoogle Scholar
  12. 12.
    W.Y. Chang, T.H. Fang, S.H. Yeh, and Y.C. Lin, J. Sensors 9, 1188 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, and K. Sato, J. Micromech. Microeng. 18, 1 (2008).CrossRefGoogle Scholar
  14. 14.
    H.-C. Cheng, C.-H. Ma, C.-F. Yu, S.-T. Lu, and W.-H. Chen, Comput. Mater. Contin. 38, 129 (2013).Google Scholar
  15. 15.
    H.-C. Cheng, H.-H. Huang, W.-H. Chen, and S.-T. Lu, J. Electron. Mater. 44, 1220 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Huang, J. Shih, A. Wei, M.C. Lin, C.S. Huang, H.T. Lin, C.L. Lin, S.Y. Chang, C.T. Wang, J. Shen, C.H. Hsiao, S.T. Lu, J. Hu and C.T. Liu, in Proceeding of International Conference on Flexible and Printed Electronics (2012).Google Scholar
  17. 17.
    S. Huang, J. Shih, A. Wei, M.C. Lin, C.S. Huang, H.T. Lin, C.L. Lin, S.Y. Chang, C.T. Wang, J. Shen, C.H. Hsiao, S.T. Lu, J. Hu and C.T. Liu, in Proceeding of MRS Fall Meeting and Exhibit (2012).Google Scholar
  18. 18.
    S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A.Schindler and N. Fruehauf, in Proceeding of Electronic Displays Conference (2011).Google Scholar
  19. 19.
    Flexible Glass for Printed Electronics. (SCHOTT news), http://www.schott.com/english/news/press.html?NID=com4 937. Accessed. 06 April 2016.
  20. 20.
    M. Pudas, J. Hagberg, and S. Leppävuori, J. Eur. Ceram. Soc. 24, 2943 (2004).CrossRefGoogle Scholar
  21. 21.
    W. Luo, W. Hu, and S. Xiao, J. Phys. Chem. C 112, 2359 (2008).CrossRefGoogle Scholar
  22. 22.
    T.-M. Lee, J.-H. Noh, I. Kim, D.-S. Kim, and S. Chun, J. Appl. Phys. 108, 102802 (2010).CrossRefGoogle Scholar
  23. 23.
    K.A. Brakke, Surface Evolver Manual. Minneapolis, version 1.98 (The Geometry Center, Minneapolis, 1994).Google Scholar
  24. 24.
    W. Chauvenet, A Manual of Spherical and Practical Astronomy, V. II. (1863), Reprint of 1891, 5th edn. (Dover, New York, 1960), pp. 474–566.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Aerospace and Systems EngineeringFeng Chia UniversityTaichungTaiwan
  2. 2.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Electronics and Optoelectronics Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations