Skip to main content

Advertisement

Log in

Numerical and Experimental Investigation on the Performance of a Thermoelectric Cooling Automotive Seat

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant’s back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Zulkifli, A.A. Dahlan, A.H. Zulkifli, H. Nasution, A.A. Aziz, M.R.M. Perang, H.M. Jamil, and M.N. Misseri, I.O.P. Conf. Ser. Mater. Sci. Eng. 100, 012028 (2015).

    Google Scholar 

  2. H. Khayyam, A.Z. Kouzani, and E.J. Hu, in IEEE Intelligent Vehicles Symposium, p. 752 (2009).

  3. V.H. Johnson, SAE Technical Paper, 2002-01-1957 (2005).

  4. J. Lustbader, SAE Technical Paper, 2005-01-2056 (2005).

  5. X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energ. Convers. Manag 90, 121 (2015).

    Article  Google Scholar 

  6. W.R. Bai, X.H. Yuan, and X. Liu, Appl. Therm. Eng. 124, 178 (2017).

    Article  Google Scholar 

  7. C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).

    Article  Google Scholar 

  8. Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energ. Convers. Manag 126, 266 (2016).

    Article  Google Scholar 

  9. S. Maneewan, W. Tipsaenprom, and C. Lertsatitthanakorn, J. Electron. Mater. 39, 1659 (2010).

    Article  Google Scholar 

  10. X. Liu, Y.D. Deng, K. Zhang, M. Xu, Y. Xu, and C.Q. Su, Appl. Therm. Eng. 71, 364 (2014).

    Article  Google Scholar 

  11. Q.S. Wan, Y.D. Deng, C.Q. Su, and Y.P. Wang, J. Electron. Mater. 46, 2990 (2007).

    Article  Google Scholar 

  12. M.S. Raut and P.V. Walke, Int. J. Eng. Sci. Technol. 4, 5 (2012).

    Google Scholar 

  13. A. Attar, H. Lee, and S. Weera, J. Electron. Mater. 43, 2179 (2014).

    Article  Google Scholar 

  14. K. Chen, J. Bozeman, M. Wang, D. Ghosh, E. Wolfe, and S. Chowdhury, SAE Technical Paper, 2015-01-0352 (2015).

  15. S. Feher, SAE Technical Paper 931111 (1993).

  16. A. Elarusi, A. Attar, and H. Lee, J. Electron. Mater. 46, 1984 (2016).

    Article  Google Scholar 

  17. H. Du, Y.P. Wang, X.H. Yuan, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 45, 1529 (2016).

    Article  Google Scholar 

  18. M. Vinoth and D. Prema, in 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), vol. 488 (2014).

  19. N. Wolfe, X.X. Mu, L.J. Huang, and P. Kadle, SAE Technical Papers, 2007-01-1193(2007).

  20. P.M. Rutkowski, SAE Technical Papers, 2010-01-0552 (2010).

  21. W. Tipsaenporm, M. Rungsiyopas, and C. Lertsatitthanakorn, J. Electron. Mater. 43, 1804 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Dong, W., Deng, Y. et al. Numerical and Experimental Investigation on the Performance of a Thermoelectric Cooling Automotive Seat. J. Electron. Mater. 47, 3218–3229 (2018). https://doi.org/10.1007/s11664-017-5960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5960-4

Keywords

Navigation