Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 998–1002 | Cite as

The Effect of SbI3 Doping on the Structure and Electrical Properties of n-Type Bi1.8Sb0.2Te2.85Se0.15 Alloy Prepared by the Free Growth Method

  • Xiaoyu Wang
  • Yuan Yu
  • Bin Zhu
  • Na Gao
  • Zhongyue Huang
  • Bo Xiang
  • Fangqiu ZuEmail author
Article

Abstract

Thermoelectric technology is regarded as one of the most promising direct power generation techniques via thermoelectric materials. However, the batch production and scale-up application are hindered because of the high-cost and poor performance. In this work, we adopt the free growth method to synthesize a series of the bulk materials of SbI3-doped Bi1.8Sb0.2Te2.85Se0.15 alloys. The structural and component investigations as well as the electrical properties characterization are carried out. The results show that SbI3 promotes the formation of Te-rich regions in the matrix. In addition, the synergistically optimized electrical conductivity and Seebeck coefficient are attained by controlling the SbI3 doping concentration. Thus, the sample with 0.30 wt.% SbI3 displays a highly increased power factor of ∼ 13.57 μW cm−1 K−2, which is nearly 21 times higher than that of the undoped one. Moreover, the free growth method is reproducible, convenient and economical. Therefore, it has great potential as a promising technology for the batch synthesis.

Keywords

The free growth method Bi1.8Sb0.2Te2.85Se0.15 alloy SbI3 doping electrical transport property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194–213 (2015).CrossRefGoogle Scholar
  2. 2.
    J.H. Kim, W.J. Kim, and T.S. Oh, J. Electron. Mater. 45, 3410–3417 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Jiang, L. Chen, Q. Yao, S. Bai, and Q. Wang, Mater. Chem. Phys. 92, 39–42 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Wang, W. Xie, H. Li, and X. Tang, Intermetallics 19, 1024–1031 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng., B 117, 334–338 (2005).CrossRefGoogle Scholar
  7. 7.
    S.Y. Wang, W.J. Xie, H. Li, X.F. Tang, and Q.J. Zhang, J. Electron. Mater. 40, 1150–1157 (2011).CrossRefGoogle Scholar
  8. 8.
    T.S. Oh, D.B. Hyun, and N.V. Kolomoets, Scripta Mater. 42, 849–854 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Du, K.F. Cai, H. Li, and B.J. An, J. Electron. Mater. 40, 518–522 (2010).CrossRefGoogle Scholar
  10. 10.
    C.L.J. Seo and K. Park, J. Mater. Sci. 35, 1549–1554 (2000).CrossRefGoogle Scholar
  11. 11.
    L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, and X. Zhao, Adv. Energy Mater. 5, 1–13 (2015).CrossRefGoogle Scholar
  12. 12.
    D.B. Hyun, J.S. Hwang, T.S. Oh, J.D. Shim, and N.V. Kolomoets, J. Phys. Chem. Solids 59, 1039–1044 (1998).CrossRefGoogle Scholar
  13. 13.
    T.S.O.D.B. Hyun, J.S. Hwang, J.D. Shim, and N.V. Kolomoets, Scr. Mater. 40, 49–56 (1998).CrossRefGoogle Scholar
  14. 14.
    Y. Morisaki, H. Araki, H. Kitagawa, M. Orihashi, K. Hasezaki, and K. Kimura, Mater. Trans. 46, 2518–2524 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Miura, Y. Sato, K. Fukuda, K. Nishimura, and K. Ikeda, Mater. Sci. Eng., A 277, 244–249 (2000).CrossRefGoogle Scholar
  16. 16.
    T.E. Svechnikova, P.P. Konstantinov, and G.T. Alekseeva, Inorg. Mater. 36, 556–560 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Yang, R. Chen, X.A. Fan, S. Bao, and W. Zhu, J. Alloys Compd. 407, 330–333 (2006).CrossRefGoogle Scholar
  18. 18.
    L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, and J. Liu, J. Alloys Compd. 455, 259–264 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Yu, B. Zhu, Z. Wu, Z.Y. Huang, X.Y. Wang, and F.Q. Zu, Intermetallics 66, 40–47 (2015).CrossRefGoogle Scholar
  20. 20.
    Y. Yu, L. Lv, X.Y. Wang, B. Zhu, Z.Y. Huang, and F.Q. Zu, Mater. Des. 88, 743–750 (2015).CrossRefGoogle Scholar
  21. 21.
    B. Zhu, Y. Yu, X.Y. Wang, F.Q. Zu, Z.Y. Huang, J. Mater. Sci., 3 (2017).Google Scholar
  22. 22.
    K.P.J. Seo and C. Lee, Mater. Reas. Bull. 33, 553–559 (1998).CrossRefGoogle Scholar
  23. 23.
    F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959).CrossRefGoogle Scholar
  24. 24.
    C.W. Hwang, D.B. Hyun, H.P. Ha, and T.S. Oh, J. Mater. Sci. 36, 3291–3297 (2001).CrossRefGoogle Scholar
  25. 25.
    D.B. Hyun, T.S. Oh, J.S. Hwang, and J.D. Shim, Scr. Mater. 44, 455–460 (2001).CrossRefGoogle Scholar
  26. 26.
    L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211–5218 (2014).CrossRefGoogle Scholar
  27. 27.
    O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368–374 (2003).CrossRefGoogle Scholar
  28. 28.
    L. Pan, S. Mitra, L.D. Zhao, Y. Shen, Y. Wang, C. Felser, and D. Berardan, Adv. Funct. Mater. 26, 5149–5157 (2016).CrossRefGoogle Scholar
  29. 29.
    J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317–4323 (2013).CrossRefGoogle Scholar
  30. 30.
    T. Zhu, L. Hu, X. Zhao, and J. He, Adv. Sci. 3, 1600004 (2016).CrossRefGoogle Scholar
  31. 31.
    K. Uemura, I. Nishida, Nikkan-Kogyo, Tokyo, 145 (1988).Google Scholar
  32. 32.
    S. Jing, J. Mao, S. Song, Q. Zhu, J. Sun, Y. Wang, R. He, J. Zhou, D.J. Singh, G. Chen, and Z. Ren, Energy Environ. Sci. 10, 799–807 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Xiaoyu Wang
    • 1
  • Yuan Yu
    • 1
    • 2
  • Bin Zhu
    • 1
  • Na Gao
    • 1
  • Zhongyue Huang
    • 1
  • Bo Xiang
    • 3
  • Fangqiu Zu
    • 1
    Email author
  1. 1.Liquid/Solid Metal Processing Institute, School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.I. Physikalisches Institute (IA)RWTH AachenAachenGermany
  3. 3.Key Laboratory of Advanced Functional Materials and Devices of Anhui ProvinceHefeiChina

Personalised recommendations