Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 1490–1496 | Cite as

Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

  • Constantin Claudiu Ciobotaru
  • Silviu Polosan
  • Iulia Corina Ciobotaru
Article
  • 64 Downloads

Abstract

This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host–guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet–triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet–triplet exothermic charge transfer. The higher charge carrier mobility in the case of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet–triplet harvesting in the host–guest system. The excitation is transferred to the guest molecules by triplet–triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

Keywords

Organometallic compound OLED host–guest interaction dual electroluminescence charge transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by a grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, and Project No. PN-II-ID-PCE-2011-3-0620.

Supplementary material

11664_2017_5945_MOESM1_ESM.pdf (337 kb)
Supplementary material 1 (PDF 336 kb)

References

  1. 1.
    A.K. Basal, A. Penzkofer, W. Holzen, and T. Tsuboi, Mol. Cryst. Liq. Cryst. 467, 21 (2007).CrossRefGoogle Scholar
  2. 2.
    M.A. Baldo and M. Segal, Phys. Status Solidi A 201, 1205 (2004).CrossRefGoogle Scholar
  3. 3.
    M.A. Baldo and S.R. Forrest, Phys. Rev. B 62, 10958 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Goushi, R. Kwong, J.J. Brown, H. Sasabe, and C. Adachi, J. Appl. Phys. 95, 7798 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Juhasz, J. Nevrela, M. Micjan, M. Novota, J. Uhrik, L. Stuchlikova, J. Jakabovic, L. Harmatha, and M. Weis, Beilstein J. Nanotechnol. 7, 47 (2016).CrossRefGoogle Scholar
  6. 6.
    B. Diouf, W.S. Jeon, R. Pode, and J.H. Kwon, Adv. Mater. Sci. Eng. (2012).  https://doi.org/10.1155/2012/794674.Google Scholar
  7. 7.
    J.S. Park, W.S. Jeon, J.H. Yu, R. Pode, and J.H. Kwon, Thin Solid Films 519, 3259 (2011).CrossRefGoogle Scholar
  8. 8.
    A.A. Shoustikov, Y. You, and M.E. Thompson, IEEE J. Sel. Top. Quantum Electron. 4, 3 (1998).CrossRefGoogle Scholar
  9. 9.
    F. Pschenitzka and J.C. Sturm, Appl. Phys. Lett. 79, 4354 (2001).CrossRefGoogle Scholar
  10. 10.
    J. Shen and J. Yang, J. Appl. Phys. 83, 7706 (1998).CrossRefGoogle Scholar
  11. 11.
    J. Yang and J. Shen, J. Appl. Phys. 84, 2105 (1998).CrossRefGoogle Scholar
  12. 12.
    L.I. Liu, N.N. Barashkov, C.P. Palsule, S. Gangopadhyay, and W.L. Borst, J. Appl. Phys. 88, 4860 (2000).CrossRefGoogle Scholar
  13. 13.
    D. Han, L. Zhao, C. Pang, and H. Zhao, Polyhedron 126, 134 (2017).CrossRefGoogle Scholar
  14. 14.
    R. Srivastava, Mol. Phys. 113, 1451 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Polosan and I.C. Ciobotaru, J. Optoelectron. Adv. Mater. 16, 87 (2014).Google Scholar
  16. 16.
    S.A. Bagnich, S. Athanasopoulos, A. Rudnick, P. Schroegel, I. Bauer, N.C. Greenham, P. Strohriegl, and A. Köhler, J. Phys. Chem. C 119, 2380 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Polosan, I.C. Ciobotaru, and T. Tsuboi, Mater. Chem. Phys. 162, 822 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Uchida, C. Adachi, T. Koyama, and Y. Taniguchi, J. Appl. Phys. 86, 1680 (1999).CrossRefGoogle Scholar
  19. 19.
    I.C. Ciobotaru, S. Polosan, and C.C. Ciobotaru, J. Lumin. 145, 259 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Gao, F. Wang, K. Guo, H. Wang, B. Wei, and B. Xu, Opt. Laser Technol. 56, 20 (2014).CrossRefGoogle Scholar
  21. 21.
    P.S. Rudati, D.C. Mueller, and K. Meerholz, J. Appl. Res. Technol. 13, 253 (2015).CrossRefGoogle Scholar
  22. 22.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, A.D. Daniels, O. Farkas, A.D. Rabuck, K. Raghavachari, and J.V. Ortiz, Gaussian 03 (Wallingford: Gaussian Inc., 2003).Google Scholar
  23. 23.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  24. 24.
    P.J. Hay, J. Phys. Chem. A 106, 1634 (2002).CrossRefGoogle Scholar
  25. 25.
    L.A. Sacksteder, A.P. Zipp, E.A. Brown, J. Streich, and J.N. Demas, Inorg. Chem. 29, 4335 (1990).CrossRefGoogle Scholar
  26. 26.
    M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, and J. Shinar, Adv. Mater. 23, 3590 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Park, J.S. Park, Y.G. Park, J.Y. Lee, J.W. Kang, J. Liu, L. Dai, and S.H. Jin, Org. Electron. 14, 2114 (2013).CrossRefGoogle Scholar
  28. 28.
    T. Tsuboi, H. Murayama, and A. Penzkofer, Appl. Phys. B 81, 93 (2005).CrossRefGoogle Scholar
  29. 29.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
  30. 30.
    T. Tsuzuki and S. Tokito, Adv. Mater. 19, 276 (2007).CrossRefGoogle Scholar
  31. 31.
    B.D. Chin, M.C. Suh, M.H. Kim, S.T. Lee, H.D. Kim, and H.K. Chung, Appl. Phys. Lett. 86, 133505 (2005).CrossRefGoogle Scholar
  32. 32.
    E. Tutiš, D. Berner, and L. Zuppiroli, J. Appl. Phys. 93, 4594 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Constantin Claudiu Ciobotaru
    • 1
  • Silviu Polosan
    • 1
  • Iulia Corina Ciobotaru
    • 1
  1. 1.Multifunctional Materials and Structures LaboratoryNational Institute of Materials PhysicsBucharest-MagureleRomania

Personalised recommendations