Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 1390–1396 | Cite as

Microwave-Assisted Hydrothermal Synthesis of Cu-Doped ZnO Single Crystal Nanoparticles with Modified Photoluminescence and Confirmed Ferromagnetism

  • M. Fang
  • C. M. Tang
  • Z. W. Liu
Article

Abstract

Single crystal ZnO- and Cu-doped ZnO nanoparticles were synthesized by microwave assisted hydrothermal method. The effects of Cu concentration on the optical and magnetic properties of the nanoparticles were investigated. Cu doping did not lead to the formation of a second phase, but slightly reduced the particle size. The valence state of Cu in ZnO was confirmed to be + 2. With the increase of Cu doping concentration, the photoluminescence intensity decreased under the excitation by the light with a wavelength of 325 nm. Intrinsic ferromagnetic behavior was confirmed in Cu-doped ZnO nanoparticles and the saturation magnetization can be enhanced by increasing doping concentration. The origin of ferromagnetism can be interpreted by both effects of Cu doping and the defects.

Keywords

Cu-doped ZnO microwave hydrothermal method photoluminescence magnetic properties ferromagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Jiang, Y. Liu, H. Kan, B. Yuan, and H. Zhao, Mater. Lett. 81, 198 (2012).CrossRefGoogle Scholar
  2. 2.
    C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 838 (2003).CrossRefGoogle Scholar
  3. 3.
    Y. Lai, M. Ming, Y. Yu, X. Wang, and D. Tong, Appl. Catal. B Environ. 105, 335 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Caliskan and S. Guner, J. Alloys Compd. 619, 91 (2015).CrossRefGoogle Scholar
  5. 5.
    I. Zutic, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Zhang, Z. Huang, X. Liao, G. Yin, and J. Gu, J. Coat. Technol. Res. 9, 621 (2012).CrossRefGoogle Scholar
  7. 7.
    N. Samarth and J.K. Furdyna, J. Appl. Phys. 78, 990 (1988).Google Scholar
  8. 8.
    M. Johnson, J. Phys. Chem. B 109, 14278 (2005).CrossRefGoogle Scholar
  9. 9.
    F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, and B.H. Koo, J. Korean Phys. Soc. 62, 1479 (2013).CrossRefGoogle Scholar
  10. 10.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, and H.C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009).CrossRefGoogle Scholar
  11. 11.
    J.J. Liu, M.H. Yu, and W.L. Zhou, Appl. Phys. Lett. 87, 172505 (2005).CrossRefGoogle Scholar
  12. 12.
    J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo, J. Appl. Phys. 92, 6066 (2002).CrossRefGoogle Scholar
  13. 13.
    J.H. Park, G.K. Min, H.M. Jang, S. Ryu, and Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004).CrossRefGoogle Scholar
  14. 14.
    D.B. Buchholz, R.P.H. Chang, J.Y. Song, and J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).CrossRefGoogle Scholar
  15. 15.
    F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, G.W. Kim, J.Q. Lu, and B.H. Koo, J. Korean Phys. Soc. 60, 1644 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).CrossRefGoogle Scholar
  17. 17.
    M.L. Addonizio, A. Aronne, S. Daliento, O. Tari, E. Fanelli, and P. Pernice, Appl. Surf. Sci. 305, 194 (2014).CrossRefGoogle Scholar
  18. 18.
    Z. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, and Z. Zheng, Mater. Lett. 63, 130 (2009).CrossRefGoogle Scholar
  19. 19.
    S.T. Tan, A.A. Umar, A. Balouch, M. Yahaya, C.C. Yap, M.M. Salleh, and M. Oyama, Ultrason. Sonochem. 21, 754 (2014).CrossRefGoogle Scholar
  20. 20.
    M.S. Mohajerani, M. Mazloumi, A. Lak, A. Kajbafvala, S. Zanganeh, and S.K. Sadrnezhaad, J. Cryst. Growth 310, 3621 (2008).CrossRefGoogle Scholar
  21. 21.
    T. Krishnakumar, R. Jayaprakash, N. Pinna, V.N. Singh, B.R. Mehta, and A.R. Phani, Mater. Lett. 63, 242 (2009).CrossRefGoogle Scholar
  22. 22.
    C. Xu, K. Yang, L. Huang, and H. Wang, J. Chem. Phys. 130, 082504 (2009).Google Scholar
  23. 23.
    Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, and T. Wu, J. Phys. Chem. C 112, 9579 (2008).CrossRefGoogle Scholar
  24. 24.
    H.L. Liu, L.H. Fei, H.B. Liu, J.H. Yang, X. Jin, M. Gao, Y. Liu, X. Cheng, and X. Zhang, J. Mater. Sci. Mater. Electron. 24, 58 (2013).CrossRefGoogle Scholar
  25. 25.
    J.A. Mary, J.J. Vijaya, M. Bououdina, L.J. Kennedy, J.H. Dai, and Y. Song, Phys. E 66, 209 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Dai, C.X. Xu, X.Y. Xu, J.T. Li, J.Y. Guo, and Y. Lin, APL Mater. 1, 617 (2013).CrossRefGoogle Scholar
  27. 27.
    O. Akhavan, R. Azimirad, S. Safa, and E. Hasani, J. Mater. Chem. 21, 9634 (2011).CrossRefGoogle Scholar
  28. 28.
    L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, and H. Fu, J. Solid State Chem. 177, 3375 (2004).CrossRefGoogle Scholar
  29. 29.
    R. Mariappan, V. Ponnuswamy, and P. Suresh, Superlattice Microstruct. 52, 500 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Li, S. Wang, J. Li, and Y. Wei, J. Lumin. 132, 220 (2012).CrossRefGoogle Scholar
  31. 31.
    V.A.L. Roy, A.B. Djurišić, H. Liu, X.X. Zhang, Y.H. Leung, M.H. Xie, J. Gao, H.F. Lui, and C. Surya, Appl. Phys. Lett. 84, 756 (2004).CrossRefGoogle Scholar
  32. 32.
    Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheng, and T. Wu, Appl. Phys. Lett. 98, 162503 (2011).CrossRefGoogle Scholar
  33. 33.
    R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 24, 96 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, and Y. Li, Ceram. Int. 43, 3166 (2017).CrossRefGoogle Scholar
  35. 35.
    J.M. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005).CrossRefGoogle Scholar
  36. 36.
    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-7198-6.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations