Skip to main content
Log in

Electrochemical Determination of Baicalin in Traditional Chinese Medicine Based on the Enhancement Effect of MoO3-Reduced Graphene Oxide Nanocomposite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The nanocomposites of MoO3-reduced graphene oxide (MoO3-RGO) were synthesized by hydrothermal reduction using MoCl5 and graphene oxide as precursors. The resulting composites were characterized with scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectra, and were further used to modify the glassy carbon electrode (GCE). After optimizing the parameters, the electrochemical behavior of baicalin on different types of electrodes was investigated. The MoO3-RGO composite-modified GCE exhibited remarkably enhanced electrochemical signals of baicalin. After 90 s, under open circuit potential, oxidation and reduction peaks appeared at 0.207 V and 0.103 V, respectively. A sensitive and simple electrochemical method was proposed for the determination of baicalin in which the calibration curve ranges from 1.0 × 10−9 M to 4.3 × 10−5 M, and the detection limit is 3.81 × 10−10 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, X. Wang, L. Wang, M. Yu, and X. Han, Bioelectrochemistry 95, 29 (2014).

    Article  Google Scholar 

  2. M.K. Paudel, W. Putalun, B. Sritularak, O. Morinaga, Y. Shoyama, H. Tanaka, and S. Morimoto, Anal. Chim. Acta 701, 189 (2011).

    Article  Google Scholar 

  3. Y.C. Yang, M.C. Wei, T.C. Huang, S. Lee, and S.S. Lin, Ind. Crops Prod. 45, 182 (2013).

    Article  Google Scholar 

  4. A. Kotani, S. Kojima, H. Hakamata, and F. Kusu, Anal. Biochem. 350, 99 (2006).

    Article  Google Scholar 

  5. Z.G. Liu, A. Zhang, Y. Guo, and C. Dong, Biosens. Bioelectron. 58, 242 (2014).

    Article  Google Scholar 

  6. Y.Y. Peng, X.H. Ding, Q.C. Chu, and J.N. Ye, Anal. Lett. 13, 2793 (2003).

    Article  Google Scholar 

  7. Y.Y. Sun, J. Anal. Sci. 3, 299 (2003).

    Google Scholar 

  8. G. Chen, H.W. Zhang, and J.N. Ye, Talanta 53, 471 (2000).

    Article  Google Scholar 

  9. L. Tong, M. Wan, L. Zhang, Y. Zhu, H. Sun, and K. Bi, J. Pharm. Biomed. Anal. 70, 6 (2012).

    Article  Google Scholar 

  10. H.Y. Zhang, T.Y. Wang, Y.L. Qiu, F.F. Fu, and Y.Y. Yu, J. Electroanal. Chem. 775, 286 (2016).

    Article  Google Scholar 

  11. D. Jiang, Y. Wang, W. Wei, F. Li, Y.J. Li, L.H. Zhu, C.H. Feng, C.X. Liu, and S.P. Ruan, RSC Adv. 24, 18655 (2015).

    Article  Google Scholar 

  12. L. Zheng, Y. Xu, D. Jin, and Y. Xie, Chem. Mater. 21, 5681 (2009).

    Article  Google Scholar 

  13. X.M. Huang, J.L. Liu, J.L. Chen, Y.D. Xu, and W.J. Shen, Catal. Lett. 1–2, 79 (2006).

    Article  Google Scholar 

  14. T. He and J.N. Yao, J. Photochem. Photobiol. C Photochem. Rev. 2, 125 (2003).

    Article  Google Scholar 

  15. R. Sivakumar, C.S. Gopinath, M. Jayachandran, and C. Sanjeeviraja, Curr. Appl. Phys. 1, 76 (2007).

    Article  Google Scholar 

  16. D.L. Chen, M.N. Liu, L. Yin, T. Li, Z. Yang, X.J. Li, B.B. Fan, H.L. Wang, R. Zhang, Z.X. Li, H.L. Xu, H.X. Lu, D.Y. Yang, J. Sun, and L. Gao, J. Mater. Chem. 21, 9332 (2011).

    Article  Google Scholar 

  17. S.Z. Zu and B.H. Han, Phys. Chem. C 113, 13651 (2009).

    Article  Google Scholar 

  18. W.B. Hu, W. Zhang, Y. Wu, and W.Y. Qu, J. Electroceram. (2017). https://doi.org/10.1007/s10832-017-0075-0.

    Google Scholar 

  19. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, and Y.g H. Lee. Adv. Func. Mater. 12, 1987 (2009).

    Article  Google Scholar 

  20. V.L. Volkov, G.S. Zakharova, and M.V. Kuznetsov, Russ. J. Inorg. Chem. 11, 1686 (2008).

    Article  Google Scholar 

  21. F.P.S. Mauro, C.J.F.C. Heloisa, R.T. Eduardo, J.P. Mário, and C.I. Paulo, J. Therm. Anal. Calorim. 107, 257 (2012).

    Article  Google Scholar 

  22. Y. Wu, C.X. Hu, M. Huang, N.N. Song, and W.B. Hu, Ionics 21, 1427 (2015).

    Article  Google Scholar 

  23. X.G. Li, Y.P. Zhang, and Z.B. Yuan, Chromatographia 55, 453 (2002).

    Article  Google Scholar 

  24. S.Q. Han, H. Li, and E.B. Liu, Microchim. Acta 150, 167 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, W., Wang, M. et al. Electrochemical Determination of Baicalin in Traditional Chinese Medicine Based on the Enhancement Effect of MoO3-Reduced Graphene Oxide Nanocomposite. J. Electron. Mater. 47, 1151–1157 (2018). https://doi.org/10.1007/s11664-017-5899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5899-5

Keywords

Navigation