Journal of Electronic Materials

, Volume 47, Issue 1, pp 785–793 | Cite as

Comparison of NO2 Gas-Sensing Properties of Three Different ZnO Nanostructures Synthesized by On-Chip Low-Temperature Hydrothermal Growth

  • Mingzhi Jiao
  • Nguyen Van Duy
  • Do Dang Trung
  • Nguyen Duc Hoa
  • Nguyen  Van Hieu
  • Klas Hjort
  • Hugo Nguyen
Open Access


Three different ZnO nanostructures, dense nanorods, dense nanowires, and sparse nanowires, were synthesized between Pt electrodes by on-chip hydrothermal growth at 90°C and below. The three nanostructures were characterized by scanning electron microscopy and x-ray diffraction to identify their morphologies and crystal structures. The three ZnO nanostructures were confirmed to have the same crystal type, but their dimensions and densities differed. The NO2 gas-sensing performance of the three ZnO nanostructures was investigated at different operation temperatures. ZnO nanorods had the lowest response to NO2 along with the longest response/recovery time, whereas sparse ZnO nanowires had the highest response to NO2 and the shortest response/recovery time. Sparse ZnO nanowires also performed best at 300°C and still work well and fast at 200°C. The current–voltage curves of the three ZnO nanostructures were obtained at various temperatures, and the results clearly showed that sparse ZnO nanowires did not have the linear characteristics of the others. Analysis of this phenomenon in connection with the highly sensitive behavior of sparse ZnO nanowires is also presented.


ZnO nanostructures NO2 gas sensor hydrothermal on-chip 


  1. 1.
    M.D. Mccluskey and S.J. Jokela, J. Appl. Phys. 106, 71101 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Ahn, K. Park, J. Heo, J. Park, D. Kim, K.J. Choi, J. Lee, S. Hong, M. Ahn, K. Park, J. Heo, J. Park, D. Kim, K.J. Choi, and J. Lee, Appl. Phys. Lett. 93, 263103 (2008).CrossRefGoogle Scholar
  3. 3.
    R. Kumar, G. Kumar, and A. Umar, Nano-Micro Lett. 7, 97 (2015).CrossRefGoogle Scholar
  4. 4.
    F.-T. Liu, S.-F. Gao, S.-K. Pei, S.-C. Tseng, and C.-H.J. Liu, J. Taiwan Inst. Chem. Eng. 40, 528 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, Sens. Actuators B 157, 565 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Shouli, L. Xin, L. Dianqing, C. Song, L. Ruixian, and C. Aifan, Sens. Actuators B 153, 110 (2011).CrossRefGoogle Scholar
  7. 7.
    D. Calestani, M. Zha, R. Mosca, A. Zappettini, M.C. Carotta, V. Di Natale, and L. Zanotti, Sens. Actuators B 144, 472 (2010).CrossRefGoogle Scholar
  8. 8.
    S. An, S. Park, H. Ko, C. Jin, W. In, and C. Lee, Thin Solid Films 547, 241 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Pan, X. Liu, A. Bermak, and Z. Fan, ACS Nano 7, 9318 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Öztürk, N. Kılınç, and Z. Ziya, J. Alloys Compd. 581, 196 (2013).CrossRefGoogle Scholar
  11. 11.
    A.Z. Sadek, S. Member, S. Choopun, W. Wlodarski, S.J. Ippolito, and K. Kalantar-zadeh, IEEE Sens. J. 7, 919 (2007).CrossRefGoogle Scholar
  12. 12.
    E. Oh, H. Choi, S. Jung, S. Cho, J. Chang, K. Lee, S. Kang, J. Kim, J. Yun, and S. Jeong, Sens. Actuators B 141, 239 (2009).CrossRefGoogle Scholar
  13. 13.
    M.-W.W. Ahn, K.-S.S. Park, J.-H.H. Heo, D.-W.W. Kim, K.J.J. Choi, and J.-G.G. Park, Sens. Actuators B 138, 168 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Nguyen, C. Thi, N. Duc, N. The, and N. Van Duy, Sens. Actuators B 193, 888 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Jiao, N. Viet, N. Van Duy, and N. Duc, Mater. Lett. 169, 231 (2016).CrossRefGoogle Scholar
  16. 16.
    M.C. Carotta, A. Cervi, V. di Natale, S. Gherardi, A. Giberti, V. Guidi, D. Puzzovio, B. Vendemiati, G. Martinelli, M. Sacerdoti, D. Calestani, A. Zappettini, M. Zha, and L. Zanotti, Sens. Actuators B 137, 164 (2009).CrossRefGoogle Scholar
  17. 17.
    C.T. Quy, C.M. Hung, N. Van Duy, N.D. Hoa, M. Jiao, and H. Nguyen, J. Electron. Mater. 46, 3406 (2017).CrossRefGoogle Scholar
  18. 18.
    Y. Şahin, S. Öztürk, N. Kılınç, A. KÖsemen, M. Erkovan, and Z.Z. Öztürk, Appl. Surf. Sci. 303, 90 (2014).CrossRefGoogle Scholar
  19. 19.
    R. Ahmad, N. Tripathy, and Y.-B. Hahn, Biosens. Bioelectron. 45, 281 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Chon, J. Catal. 14, 257 (1969).CrossRefGoogle Scholar
  21. 21.
    S. Fujitsu, K. Koumoto, H. Yanagida, Y. Watanabe, and H. Kawazoe, Jpn. J. Appl. Phys.. 38, 1534 (1999).CrossRefGoogle Scholar
  22. 22.
    J. Ding, J. Zhu, P. Yao, J. Li, H. Bi, and X. Wang, Ind. Eng. Chem. Res. 54, 8947 (2015).CrossRefGoogle Scholar
  23. 23.
    N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  24. 24.
    A. Katoch, S.-W. Choi, G.-J. Sun, and S.S. Kim, J. Mater. Chem. A 1, 13588 (2013).CrossRefGoogle Scholar
  25. 25.
    C.C. Li, Z.F. Du, L.M. Li, H.C. Yu, Q. Wan, and T.H. Wang, Appl. Phys. Lett. 91, 32101 (2007).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.International Training Institute for Materials ScienceHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations