Advertisement

Journal of Electronic Materials

, Volume 47, Issue 2, pp 917–926 | Cite as

Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

  • E. Tomas Barraza
  • Wiley A. Dunlap-Shohl
  • David B. Mitzi
  • Adrienne D. Stiff-RobertsEmail author
Topical Collection: 59th Electronic Materials Conference 2017
Part of the following topical collections:
  1. 59th Electronic Materials Conference 2017

Abstract

Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic–inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

Keywords

RIR-MAPLE matrix-assisted pulsed laser evaporation metal-halide perovskites methylammonium lead iodide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation, Research Triangle MRSEC (DMR-1121107). We would like to acknowledge the contributions of Wangyao Ge, Yuankai Liu, and Chenqi Zhao from the Stiff-Roberts group at Duke University in developing the RIR-MAPLE methods described within this work.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11664_2017_5814_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (PDF 162 kb)

References

  1. 1.
    D.B. Mitzi, Progress in Inorganic Chemistry (Hoboken: Wiley, 1999), pp. 1–121.CrossRefGoogle Scholar
  2. 2.
    National Renewable Energy Laboratory. Best Research-Cell Efficiencies. http://www.nrel.gov/ncpv/images/effici ency_chart.jpg. Accessed 25 June 2017.
  3. 3.
    M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).CrossRefGoogle Scholar
  4. 4.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).CrossRefGoogle Scholar
  5. 5.
    W.J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).CrossRefGoogle Scholar
  6. 6.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 982 (2014).CrossRefGoogle Scholar
  7. 7.
    A.K. Guria, S.K. Dutta, S. Das Adhikari, and N. Pradhan, ACS Energy Lett. 2, 1014 (2017).CrossRefGoogle Scholar
  8. 8.
    W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, and D.B. Mitzi, J. Phys. Chem. C 120, 16437 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Shahbazi, C.M. Tsai, S. Narra, C.Y. Wang, H.S. Shiu, S. Afshar, N. Taghavinia, and E.W.G. Diau, J. Phys. Chem. C 121, 3673 (2017).CrossRefGoogle Scholar
  10. 10.
    W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite, Science 347, 522 (2015).CrossRefGoogle Scholar
  11. 11.
    K. Liang, D.B. Mitzi, and M.T. Prikas, Chem. Mater. 10, 403 (1998).CrossRefGoogle Scholar
  12. 12.
    K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, and D. Vak, Adv. Mater. 27, 1241 (2015).CrossRefGoogle Scholar
  13. 13.
    S.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, X.-Q. Zhou, L.-M. Yang, and Y.-L. Song, J. Mater. Chem. A 3, 9092 (2015).CrossRefGoogle Scholar
  14. 14.
    L.K. Ono, M.R. Leyden, S. Wang, and Y. Qi, J. Mater. Chem. A 4, 6693 (2016).CrossRefGoogle Scholar
  15. 15.
    W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S. Il Seok, Science 356, 1376 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395 (2013).CrossRefGoogle Scholar
  17. 17.
    D. Yang, Z. Yang, W. Qin, Y. Zhang, S.F. Liu, and C. Li, J. Mater. Chem. A 3, 9401 (2015).CrossRefGoogle Scholar
  18. 18.
    D.B. Mitzi, M.T. Prikas, and K. Chondroudis, Chem. Mater. 11, 542 (1999).CrossRefGoogle Scholar
  19. 19.
    S. Wang, L.K. Ono, M.R. Leyden, Y. Kato, S.R. Raga, M.V. Lee, and Y. Qi, J. Mater. Chem. A 3, 14631 (2015).CrossRefGoogle Scholar
  20. 20.
    W. Ge, T.B. Hoang, M.H. Mikkelsen, and A.D. Stiff-Roberts, Appl. Phys. A Mater. Sci. Process. 122, 824 (2016).CrossRefGoogle Scholar
  21. 21.
    W. Ge, N.K. Li, R.D. McCormick, E. Lichtenberg, Y.G. Yingling, A.D. Stiff-Roberts, and A.C.S. Appl, Mater. Interfaces 8, 19494 (2016).CrossRefGoogle Scholar
  22. 22.
    Q. Yu, W. Ge, A. Atewologun, G.P. López, and A.D. Stiff-Roberts, J. Mater. Chem. B 2, 4371 (2014).CrossRefGoogle Scholar
  23. 23.
    R.D. McCormick, J. Lenhardt, and A.D. Stiff-Roberts, Polymers (Basel) 4, 341 (2012).CrossRefGoogle Scholar
  24. 24.
    W. Ge, A. Atewologun, and A.D. Stiff-Roberts, Org. Electron. 22, 98 (2015).CrossRefGoogle Scholar
  25. 25.
    R. Pate, K.R. Lantz, and A.D. Stiff-Roberts, Thin Solid Films 517, 6798 (2009).CrossRefGoogle Scholar
  26. 26.
    N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015).CrossRefGoogle Scholar
  27. 27.
    Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, and E. Nakamura, J. Am. Chem. Soc. 137, 15907 (2015).CrossRefGoogle Scholar
  28. 28.
    L.C. Chen, J.R. Wu, Z.L. Tseng, C.C. Chen, S.H. Chang, J.K. Huang, K.L. Lee, and H.M. Cheng, Materials (Basel). 9, 747 (2016).CrossRefGoogle Scholar
  29. 29.
    L.-C. Chen, C.-C. Chen, J.-C. Chen, and C.-G. Wu, Sol. Energy 122, 1047 (2015).CrossRefGoogle Scholar
  30. 30.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S. Il Seok, Nat. Mater. 13, 897 (2014).CrossRefGoogle Scholar
  31. 31.
    J.S. Manser, B. Reid, and P.V. Kamat, J. Phys. Chem. C 119, 17065 (2015).CrossRefGoogle Scholar
  32. 32.
    P.P. Khlyabich and Y. Loo, Chem. Mater. 28, 9041 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceDuke University DurhamUSA
  3. 3.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations