Journal of Electronic Materials

, Volume 47, Issue 2, pp 1045–1058 | Cite as

Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

  • Sajid Khan
  • Majid Yazdani-Kachoei
  • Saeid Jalali-Asadabadi
  • Muhammad Bilal Farooq
  • Iftikhar Ahmad


Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew–Burke–Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.


Structural properties state-of-the-art calculations magnetic properties hyperfine field (HFF) electric field gradient (EFG) quadrupole coupling constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Sechovsky and L. Havela, Ferromagnetic Materials, 4th ed. (Amsterdam: North-Holland, 1988).Google Scholar
  2. 2.
    D.D. Koelling, B.D. Dunlap, and G.W. Crabtree, Phys. Rev. B 31, 4966 (1985).CrossRefGoogle Scholar
  3. 3.
    A.E. Dwight, Developments in the Structural Chemistry of Alloy Phases, ed. B.C. Giessen (New York: Plenum, 1969), pp. 181–226.CrossRefGoogle Scholar
  4. 4.
    E.A. Kmetko and H.H. Hill, Plutonium 70, ed. W.N. Miner (New York: AIME, 1970), p. 233.Google Scholar
  5. 5.
    B. Johansson, Phys. Rev. B 8, 2740 (1975).CrossRefGoogle Scholar
  6. 6.
    Y. Gao, B. Wang, Y. Lei, B. Teo, and Z. Wang, Nano Res. 9, 622 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Gao and Z. Wang, Chin. Phys. B 25, 083102 (2016).CrossRefGoogle Scholar
  8. 8.
    E. Ghasemikhah, S. Jalali Asadabadi, I. Ahmad, and M. Yazdani-Kacoei, RSC Adv. 5, 7592 (2015).CrossRefGoogle Scholar
  9. 9.
    D. Aoki, N. Suzuki, K. Miyake, Y. Inada, R. Settai, K. Sugiyama, and E. Yamamoto, J. Phys. Soc. Jpn. 70, 538 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Loewenhaupt and C.K. Loong, Phys. Rev. B 41, 9294 (1990).CrossRefGoogle Scholar
  11. 11.
    Y. Tokiw, A.D. Aoki, Y. Haga, E. Yamamoto, S. Ikeda, R. Settai, A. Nakamura, and Y.O. Nuki, J. Phys. Soc. Jpn. 70, 3326 (2001).CrossRefGoogle Scholar
  12. 12.
    M.H. Maaren, H.J. Daal, K.H.J. Buschow, and C.J. Schinkel, Solid State Commun. 14, 145 (1974).CrossRefGoogle Scholar
  13. 13.
    A. Murasik, J. Leciejewicz, S. Ligenza, and A. Misiuk, Phys. Status Solidi A 20, 395 (1973).CrossRefGoogle Scholar
  14. 14.
    A. Murasik, P. Fisher, and Z. Zolnierek, Physica B + C 102, 188 (1980).Google Scholar
  15. 15.
    S. Jalali-Asadabadi, S. Cottenier, H. Akbarzadeh, R. Saki, and M. Rots, Phys. Rev. B 66, 195103 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Jalali-Asadabadi and H. Akbarzadeh, Physica B 349, 76 (2004).CrossRefGoogle Scholar
  17. 17.
    S. Jalali-Asadabadi, Phys. Rev. B 75, 205130 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Yazdani-Kachoei, S. Jalali-Asadabadi, A. Iftikhar, and Z. Kourosh, Sci. Rep. 6, 31734 (2016).CrossRefGoogle Scholar
  19. 19.
    K. Schwarz, P. Blaha, and G. Madsen, Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Andreev, V.K. Belov, A. Deriagin, V.Z.A. Kazeǐ, R.Z. Levitin, A. Meňovský, Y. Popov, and V.I. Silant’ev, JETP 48, 1187 (1978).Google Scholar
  21. 21.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).Google Scholar
  22. 22.
    J.P. Perdew and A. Zuanger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, and M. Ernzerhop, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  24. 24.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  25. 25.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).CrossRefGoogle Scholar
  26. 26.
    V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).CrossRefGoogle Scholar
  27. 27.
    M.P. Johansson, D. Sundholm, G. Gerfen, and M. Wikström, J. Am. Chem. Soc. 39, 11771 (2002).CrossRefGoogle Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  29. 29.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  31. 31.
    F. Birch, Phys. Rev. B 71, 809 (1947).CrossRefGoogle Scholar
  32. 32.
    K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).CrossRefGoogle Scholar
  33. 33.
    J. Kollar, L. Vitos, and H.L. Skriver, Phys. Rev. B 55, 15353 (1997).CrossRefGoogle Scholar
  34. 34.
    S. Raju, E. Mohandas, and V.S. Raghunathan, J. Phys. Chem. Solids 58, 1367 (1997).CrossRefGoogle Scholar
  35. 35.
    H.H. Hill, Plutonium 1970 and Other Actinides, Part I, Nuclear Metallurgy, vol. 17, ed. W.N. Miner (New York: The Metallurgical Society, 1970), p. 2.Google Scholar
  36. 36.
    C. Kittle, Introduction to Solid State Physics (New York: John Wiley, 1983).Google Scholar
  37. 37.
    Y. Tokiwa, D. Aoki, Y. Haga, E. Yamamoto, S. Ikeda, R. Settai, A. Nakamura, and Y. Onuki, J. Phys. Condens. Matter 26, 036001 (2013).Google Scholar
  38. 38.
    M.S.S. Brooks and P.J. Kelly, Phys. Rev. Lett. 51, 1708 (1983).CrossRefGoogle Scholar
  39. 39.
    M.S.S. Brooks, Physica B 190, 55 (1993).CrossRefGoogle Scholar
  40. 40.
    G. Kalvius, J. Gal, F. Litterst, W. Potzel, J. Moser, U. Potzel, W. Schiessl, S. Zwirner, S. Fredo, and S. Tapuchi, J. Phys. Colloq. 49, 477 (1988).CrossRefGoogle Scholar
  41. 41.
    M.B. Brodsky, Prog. Phys. 41, 1457 (1978).CrossRefGoogle Scholar
  42. 42.
    N.J. Stone, Atom. Data Nucl. Data Tables 111–112, 1 (2016)Google Scholar
  43. 43.
    P. Novak, Calculation of Hyperfine Field in WIEN2k (Prague 6, Czech Republic: Institute of Physics of ASCR, 2006)Google Scholar
  44. 44.
    D. Torumba, P. Novák, and S. Cottenier, Phys. Rev. B 77, 155101 (2008).CrossRefGoogle Scholar
  45. 45.
    S. Zhu, X. Li, Z. Lu , G. Wang, and W. Shu, Application of Nuclear Quadrupole Resonance to Detection of Explosives and Research Activities at CIAE (Beijing: China Institute of Atomic Energy, 2008)Google Scholar
  46. 46.
    S.K. Mohanta, S.N. Mishra, S.K. Srivastava, and M. Rots, Solid State Commun. 150, 1789 (2010).CrossRefGoogle Scholar
  47. 47.
    P. Ravindran, A. Delin, P. James, B. Johansson, J.M. Wills, R. Ahuja, and O. Eriksson, Magnetic. Phys. Rev. B 59, 15680 (1999).CrossRefGoogle Scholar
  48. 48.
    M. Jamal, S.J. Hashemifar, and H. Akbarzadeh, J. Magn. Magn. Mater. 322, 3841 (2010).CrossRefGoogle Scholar
  49. 49.
    M. Divis, K. Schwarz, P. Blaha, G. Hilscher, H. Michor, and S. Khmelevskyi, Phys. Rev. B 62, 67 (2000).CrossRefGoogle Scholar
  50. 50.
    Z. Nourbakhsh, H. Akbarzadeh, and A. Pourghazi, J. Phys. Condens. Matter 17, 2407 (2005).CrossRefGoogle Scholar
  51. 51.
    M. Rafiee and S. Jalali-Asadabadi, Comput. Mater. Sci. 47, 584 (2009).CrossRefGoogle Scholar
  52. 52.
    R. Jonathan, C. Yates, J. Pickard, and C.M. Payne, J. Phys. Chem. A 108, 6032 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Sajid Khan
    • 1
    • 2
    • 3
  • Majid Yazdani-Kachoei
    • 4
  • Saeid Jalali-Asadabadi
    • 4
  • Muhammad Bilal Farooq
    • 1
    • 5
  • Iftikhar Ahmad
    • 1
    • 6
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdaraPakistan
  3. 3.Govt Post Graduate CollegeCharsaddaPakistan
  4. 4.Department of Physics, Faculty of SciencesUniversity of IsfahanIsfahanIran
  5. 5.Department of PhysicsAbbottabad University of Science and TechnologyHavelian, AbbottabadPakistan
  6. 6.Abbottabad University of Science and TechnologyHavelian, AbbottabadPakistan

Personalised recommendations