Journal of Electronic Materials

, Volume 47, Issue 1, pp 449–456 | Cite as

First-Principle Predictions of Electronic Properties and Half-Metallic Ferromagnetism in Vanadium-Doped Rock-Salt SrO

  • Mohamed BerberEmail author
  • Bendouma DoumiEmail author
  • Allel MokaddemEmail author
  • Yesim Mogulkoc
  • Adlane Sayede
  • Abdelkader Tadjer


We have used first-principle methods of density functional theory within the full potential linearized augmented plane wave scheme to investigate the electronic and magnetic properties of cubic rock-salt, SrO, doped with vanadium (V) impurity as Sr1−x V x O at various concentrations, x = 0.25, 0.5, and 0.75. We have found that the ferromagnetic state arrangement of Sr1−x V x O is more stable compared to the anti-ferromagnetic state configuration. The electronic structures have a half-metallic (HM) ferromagnetic (F) behavior for Sr0.75V0.25O and Sr0.5V0.5O. This feature results from the metallic and semiconducting natures of majority-spin and minority-spin bands, respectively. The HMF gap decreases with the increasing concentration of vanadium atoms due to the broadening of 3d (V) levels in the gap, and hence the Sr0.25V0.75O becomes metallic ferromagnetic. The Sr0.75V0.25O revealed a large HM gap with spin polarization of 100%. The Sr1−x V x O compound at low concentrations seems a better candidate to explore the half-metallicity for practical spintronics applications.


Electronic structures magnetic properties half-metallic gap ferromagnetic arrangement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.V. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  2. 2.
    I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Kaminska, A. Twardowski, and D. Wasik, J. Mater. Sci. Mater. Electron. 19, 828 (2008).CrossRefGoogle Scholar
  4. 4.
    B. Doumi, A. Mokaddem, A. Sayede, F. Dahmane, Y. Mogulkoc, and A. Tadjer, Superlattices Microstruct. 88, 139 (2015).CrossRefGoogle Scholar
  5. 5.
    B. Doumi, A. Mokaddem, A. Sayede, M. Boutaleb, A. Tadjer, F. Dahmane, and J. Supercond, Nov. Magn. 28, 3163 (2015).CrossRefGoogle Scholar
  6. 6.
    K. Sato and H. Katayama-Yoshida, J. Appl. Phys. 40, L485 (2001).CrossRefGoogle Scholar
  7. 7.
    S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. van Schilfgaarde, M.R. McCartney, D.J. Smith, and N. Newman, Appl. Phys. Lett. 82, 3047 (2003).CrossRefGoogle Scholar
  8. 8.
    A.L. Ruoff and T.A. Grzybowski, Solid State Physics Under Pressure, ed. S. Minomura (Tokyo: Terra Scientific, 1985), Google Scholar
  9. 9.
    C. Noguera, Physics and Chemistry of Oxides Surface (Cambridge: Cambridge University Press, 1996).CrossRefGoogle Scholar
  10. 10.
    I.S. Elfimov, A. Rusydi, S.I. Csiszar, Z. Hu, H.H. Hsieh, H.-J. Lin, C.T. Chen, R. Liang, and G.A. Sawatzky, Phys. Rev. Lett. 98, 137202 (2007).CrossRefGoogle Scholar
  11. 11.
    V. Pardo and W.E. Pickett, Phys. Rev. B 78, 134427 (2008).CrossRefGoogle Scholar
  12. 12.
    V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
  13. 13.
    V.I. Anisimov, I.V. Solovyev, and M.A. Korotin, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  14. 14.
    L. Jina and C. Zhou, Prog. Nat. Sci Mater. 23, 413 (2013).CrossRefGoogle Scholar
  15. 15.
    I. Leonov, V.I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 112, 146401 (2014).CrossRefGoogle Scholar
  16. 16.
    B. Doumi, A. Mokaddem, L. Temimi, N. Beldjoudi, M. Elkeurti, F. Dahmane, A. Sayede, A. Tadjer, and M. Ishak-Boushaki, Eur. Phys. J. B 88, 93 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Doumi, A. Mokaddem, F. Dahmane, A. Sayede, and A. Tadjer, RSC Adv. 112, 92328 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Berri, A. Kouriche, D. Maouche, F. Zerarga, and M. Attallah, Mater. Sci. Semicond. Process. 38, 101 (2015).CrossRefGoogle Scholar
  19. 19.
    Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
  20. 20.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  21. 21.
    W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  22. 22.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, an Augmented Plane Wave + Local orbitals Program for Calculating Crystal Properties (Wien: Karlheinz Schwarz, Technische Universität, 2001).Google Scholar
  23. 23.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  24. 24.
    J.D. Pack and H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977).CrossRefGoogle Scholar
  25. 25.
    P. Reunchan, N. Umezawa, S. Ouyang, and J. Ye, Phys. Chem. Chem. Phys. 14, 1876 (2012).CrossRefGoogle Scholar
  26. 26.
    Y. Liu, W. Zhou, and P. Wu, J. Appl. Phys. 121, 075102 (2017).CrossRefGoogle Scholar
  27. 27.
    J. Bai, J.-M. Raulot, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, Appl. Phys. Lett. 98, 164103 (2011).CrossRefGoogle Scholar
  28. 28.
    B. Doumi, A. Mokaddem, M. Ishak-Boushaki, and D. Bensaid, Sci. Semicond. Process. 32, 166 (2015).CrossRefGoogle Scholar
  29. 29.
    F.D. Muranghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).CrossRefGoogle Scholar
  30. 30.
    Y. Sato and R. Jeanloz, Geophys. Res. 86, 11773 (1981).CrossRefGoogle Scholar
  31. 31.
    L.-G. Liu and W.A. Bassett, J. Geophys. Res. 78, 8470 (1973).CrossRefGoogle Scholar
  32. 32.
    K.L. Yao, G.Y. Gao, Z.L. Liu, and L. Zhu, Solid State Commun. 133, 301 (2005).CrossRefGoogle Scholar
  33. 33.
    G.Y. Gao, K.L. Yao, E. ŞaŞıoğlu, L.M. Sandratskii, Z.L. Liu, and J.L. Jiang, Phys. Rev. B 75, 174442 (2007).CrossRefGoogle Scholar
  34. 34.
    M. Labidi, S. Labidi, S. Ghemid, H. Meradji, and F. El Haj Hassan, Phys. Scr. 82, 045605 (2010).CrossRefGoogle Scholar
  35. 35.
    R.J. Zollweg, Phys. Rev. 111, 113 (1958).CrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  37. 37.
    K. Sato, P.H. Dederichs, K. Araki, and H. Katayama-Yoshida, Phys. Status Solidi C 7, 2855 (2003).CrossRefGoogle Scholar
  38. 38.
    H. Akai, Phys. Rev. Lett. 81, 3002 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Centre Universitaire Nour Bachir El BayadhEl BayadhAlgeria
  2. 2.Faculty of Sciences, Department of PhysicsDr. Tahar Moulay University of SaidaSaidaAlgeria
  3. 3.Theoretical Physics LaboratoryU.S.T.H.B. AlgiersBab EzzouarAlgeria
  4. 4.Department of Engineering Physics, Faculty of EngineeringAnkara UniversityTandoganTurkey
  5. 5.Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des SciencesUniversité d’ArtoisLensFrance
  6. 6.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbèsAlgeria

Personalised recommendations