Journal of Electronic Materials

, Volume 46, Issue 11, pp 6535–6543 | Cite as

Real-Time Determination of Solar Cell Parameters

  • Mohamed Hassan Ali
  • Abdelhamid Rabhi
  • Sofiane Haddad
  • Ahmed El Hajjaji
Article
  • 60 Downloads

Abstract

The extraction of solar cell parameters is a difficult task but is an important step in the assessment procedure of solar cells and panels. This work presents numerical methods for determining these parameters and compares their performances under different solar irradiances when they are implemented in an equivalent electrical circuit model with one or two diodes. To obtain a fast convergence rate in real-time applications, the fractional-order Darwinian particle swarm optimization (FODPSO) method is used through experimental data collected from a platform of photovoltaic (PV) energy installed near the modeling, information and systems laboratory at Amiens, France. The results showed that the one-diode model is less representative than the two-diode model. Furthermore, it is envisaged that the proposed FODPSO-based extraction method is more effective in modeling with two diodes. This will allow real-time determination of solar cells parameters and consequently will help to select the most suitable PV model.

Keywords

Parameters extraction methods modeling of photovoltaic cells real-time determination experimental data 

List of symbols

T

Cell temperature (°C)

G

Global irradiation on the array surface (W/m2)

T

Time (s)

STC

Standard test condition of the PV cell; T STC = 25°C and GSTC = 1000 W/m2

PV

Photovoltaic

IV

Current voltage

PV

Power voltage

PSO

Particle swarm optimization

DPSO

Darwinian particle swarm optimization

FODPSO

Fractional-order Darwinian particle swarm optimization

1D

One diode model

2D

Two diode model

q

Electron charge (1.6 × 10−19 C)

K

Boltzmann constant (1.38 × 10−23 Nm/K)

IPV

Light generated current of a PV module (A)

I

PV module current (A)

V

PV module voltage (V)

IMPP

Maximum power point current (A)

VMPP

Maximum power point voltage (V)

ISC

Short-circuit current (A)

VOC

Open-circuit voltage (V)

VT1

Thermodynamic voltage of diode 1 (V)

VT2

Thermodynamic voltage of diode 2 (V)

a, a1, a2

Ideality factors of the cell

I0/I01,I02

Saturation currents of cell for 1Diode model/2Diode model (A)

RS

Series resistance of diode model (Ω)

RP

Parallel resistance of diode model (Ω)

V

Speed of a particle V (k) in the generation k

X

Current position of the particle

Xi

Best known position of each particle

Xg

Best known position of swarm

Ω

Hyperparameter (inertia factor)

αT, βT

Vectors drawn in [0, 1] n with uniform probability

TNOCT

Normal operating cell temperature (°C)

KI

Temperature coefficient of short-circuit current (%/°C)

KV

Temperature coefficient of open-circuit voltage (mV/°C)

ΔT

Difference between actual temperature and T STC (°C)

Ns

Number of cells connected in series

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Paridan, D. Iniyan, and R. Goic, J. Renew Sustain Energy Rev. (2010). doi: 10.1016/j.rser.2010.11.032.Google Scholar
  2. 2.
    M. Hejri, H. Mokhtari, M. Reza Azizian, M. Ghandhari, and L. Soder, IEEE J. Photovolt. (2014). doi: 10.1109/JPHOTOV.2014.2307161.Google Scholar
  3. 3.
    J.A. Ramos-Hernanz, J.J. Campayo, J. Larranaga, E. Zulueta, O. Barambones, J. Motrico, U. Fernandez Gamiz, and I. Zamora, J Sol Energy (2010). doi: 10.1016/j.solener.2010.11.005.Google Scholar
  4. 4.
    E. Matagne, R. Chenni, and R. El Bachtiri, Power Eng. (2007). doi: 10.1109/POWERENG.2007.4380173.Google Scholar
  5. 5.
    R. Banos, F. Manzano-Agugliaro, F.G. Montoya, and J. Gomez, J. Renew Sustain Energy Rev. (2010). doi: 10.1016/j.rser.2010.12.008.Google Scholar
  6. 6.
    D. Olivia, E. Cuevas, and G. Pajares, Appl. Energy (2014). doi: 10.1016/j.energy.2014.05.011.Google Scholar
  7. 7.
    M. Zagrouba, A. Sellami, M. Bouaicha, and M. Ksouri, Sol. Energy (2010). doi: 10.1016/j.solener.2010.02.012.Google Scholar
  8. 8.
    A. Askarzadeh and A. Rezazadeh, Appl. Energy (2012). doi: 10.1016/j.apenergy.2012.09.052.Google Scholar
  9. 9.
    B. Chitti Babu and S. Gurjar, IEEE J. Photovolt. (2014). doi: 10.1109/JPHOTOV.2014.2316371.Google Scholar
  10. 10.
    M.G. Villalva, J.R. Gazoli, and E.R. Filho, IEEE Trans. Power Electron. (2009). doi: 10.1109/TPEL.2009.2013862.Google Scholar
  11. 11.
    E.Q.B. Macabebe, C.J. Sheppard, and E.E. van Dyk, Sol. Energy (2010). doi: 10.1016/j.solener.2010.11.005.Google Scholar
  12. 12.
    K. Ishaque, Z. Salam, and H. Taheri, Sol. Energy Mater. Sol. Cells (2010). doi: 10.1016/j.solmat.2010.09.023.Google Scholar
  13. 13.
    K. Ishaque, Z. Salman, and H. Taheri, Power Electron. Drives Energy Syst. (2011). doi: 10.1109/PEDES.2010.5712374.Google Scholar
  14. 14.
    C. Carrero, J. Rodríguez, D. Ramírez, and C. Platero, Renewable Energy (2009). doi: 10.1016/j.renene.2009.10.025.Google Scholar
  15. 15.
    M. Davarifar, A. Rabhi, A. El Hajjaji, and M. Dahmane, Int. Conf. Syst. Control (2013). doi: 10.1109/ICoSC.2013.6750940.Google Scholar
  16. 16.
    S. Sheik Mohammed, Int. J. Civ. Environ. Eng. 2, 5 (2011).Google Scholar
  17. 17.
    B. Amrouche, N. Belhaouas, S. Achachera, and M. Tahar Boukadoum, Int. J. Hydrogen Energy (2016). doi: 10.1016/j.ijhydene.2016.04.147.Google Scholar
  18. 18.
    R. Poli, J. Kennedy, and T. Blackwell, Swarm Intell. (2007). doi: 10.1007/s11721-007-0002-0.Google Scholar
  19. 19.
    M.S. Couceiro, R.P. Rocha, and N.M.F. Ferreira, SIViP (2012). doi: 10.1007/s11760-012-0316-2.Google Scholar
  20. 20.
    A. Chouder, S. Silvestre, N. Sadaoui, and L. Rahmani, Simul. Model. Pract. Theory (2011). doi: 10.1016/j.simpat.2011.08.011.Google Scholar
  21. 21.
    H.L. Tsai and J.M. Lin, J. Electron. Mater. (2010). doi: 10.1007/s11664-009-0994-x.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Modeling, Information and Systems LaboratoryUniversity of Picardie Jules VerneAmiensFrance
  2. 2.RE LaboratoryMohamed Seddik Benyahia University of JijelJijelAlgeria
  3. 3.Research Center of Djibouti UniversityUniversity of DjiboutiDjibouti CityDjibouti

Personalised recommendations