Real-Time Determination of Solar Cell Parameters
- 60 Downloads
Abstract
The extraction of solar cell parameters is a difficult task but is an important step in the assessment procedure of solar cells and panels. This work presents numerical methods for determining these parameters and compares their performances under different solar irradiances when they are implemented in an equivalent electrical circuit model with one or two diodes. To obtain a fast convergence rate in real-time applications, the fractional-order Darwinian particle swarm optimization (FODPSO) method is used through experimental data collected from a platform of photovoltaic (PV) energy installed near the modeling, information and systems laboratory at Amiens, France. The results showed that the one-diode model is less representative than the two-diode model. Furthermore, it is envisaged that the proposed FODPSO-based extraction method is more effective in modeling with two diodes. This will allow real-time determination of solar cells parameters and consequently will help to select the most suitable PV model.
Keywords
Parameters extraction methods modeling of photovoltaic cells real-time determination experimental dataList of symbols
- T
Cell temperature (°C)
- G
Global irradiation on the array surface (W/m2)
- T
Time (s)
- STC
Standard test condition of the PV cell; T STC = 25°C and GSTC = 1000 W/m2
- PV
Photovoltaic
- I–V
Current voltage
- P–V
Power voltage
- PSO
Particle swarm optimization
- DPSO
Darwinian particle swarm optimization
- FODPSO
Fractional-order Darwinian particle swarm optimization
- 1D
One diode model
- 2D
Two diode model
- q
Electron charge (1.6 × 10−19 C)
- K
Boltzmann constant (1.38 × 10−23 Nm/K)
- IPV
Light generated current of a PV module (A)
- I
PV module current (A)
- V
PV module voltage (V)
- IMPP
Maximum power point current (A)
- VMPP
Maximum power point voltage (V)
- ISC
Short-circuit current (A)
- VOC
Open-circuit voltage (V)
- VT1
Thermodynamic voltage of diode 1 (V)
- VT2
Thermodynamic voltage of diode 2 (V)
- a, a1, a2
Ideality factors of the cell
- I0/I01,I02
Saturation currents of cell for 1Diode model/2Diode model (A)
- RS
Series resistance of diode model (Ω)
- RP
Parallel resistance of diode model (Ω)
- V
Speed of a particle V (k) in the generation k
- X
Current position of the particle
- Xi
Best known position of each particle
- Xg
Best known position of swarm
- Ω
Hyperparameter (inertia factor)
- αT, βT
Vectors drawn in [0, 1] n with uniform probability
- TNOCT
Normal operating cell temperature (°C)
- KI
Temperature coefficient of short-circuit current (%/°C)
- KV
Temperature coefficient of open-circuit voltage (mV/°C)
- ΔT
Difference between actual temperature and T STC (°C)
- Ns
Number of cells connected in series
Preview
Unable to display preview. Download preview PDF.
References
- 1.B. Paridan, D. Iniyan, and R. Goic, J. Renew Sustain Energy Rev. (2010). doi: 10.1016/j.rser.2010.11.032.Google Scholar
- 2.M. Hejri, H. Mokhtari, M. Reza Azizian, M. Ghandhari, and L. Soder, IEEE J. Photovolt. (2014). doi: 10.1109/JPHOTOV.2014.2307161.Google Scholar
- 3.J.A. Ramos-Hernanz, J.J. Campayo, J. Larranaga, E. Zulueta, O. Barambones, J. Motrico, U. Fernandez Gamiz, and I. Zamora, J Sol Energy (2010). doi: 10.1016/j.solener.2010.11.005.Google Scholar
- 4.E. Matagne, R. Chenni, and R. El Bachtiri, Power Eng. (2007). doi: 10.1109/POWERENG.2007.4380173.Google Scholar
- 5.R. Banos, F. Manzano-Agugliaro, F.G. Montoya, and J. Gomez, J. Renew Sustain Energy Rev. (2010). doi: 10.1016/j.rser.2010.12.008.Google Scholar
- 6.D. Olivia, E. Cuevas, and G. Pajares, Appl. Energy (2014). doi: 10.1016/j.energy.2014.05.011.Google Scholar
- 7.M. Zagrouba, A. Sellami, M. Bouaicha, and M. Ksouri, Sol. Energy (2010). doi: 10.1016/j.solener.2010.02.012.Google Scholar
- 8.A. Askarzadeh and A. Rezazadeh, Appl. Energy (2012). doi: 10.1016/j.apenergy.2012.09.052.Google Scholar
- 9.B. Chitti Babu and S. Gurjar, IEEE J. Photovolt. (2014). doi: 10.1109/JPHOTOV.2014.2316371.Google Scholar
- 10.M.G. Villalva, J.R. Gazoli, and E.R. Filho, IEEE Trans. Power Electron. (2009). doi: 10.1109/TPEL.2009.2013862.Google Scholar
- 11.E.Q.B. Macabebe, C.J. Sheppard, and E.E. van Dyk, Sol. Energy (2010). doi: 10.1016/j.solener.2010.11.005.Google Scholar
- 12.K. Ishaque, Z. Salam, and H. Taheri, Sol. Energy Mater. Sol. Cells (2010). doi: 10.1016/j.solmat.2010.09.023.Google Scholar
- 13.K. Ishaque, Z. Salman, and H. Taheri, Power Electron. Drives Energy Syst. (2011). doi: 10.1109/PEDES.2010.5712374.Google Scholar
- 14.C. Carrero, J. Rodríguez, D. Ramírez, and C. Platero, Renewable Energy (2009). doi: 10.1016/j.renene.2009.10.025.Google Scholar
- 15.M. Davarifar, A. Rabhi, A. El Hajjaji, and M. Dahmane, Int. Conf. Syst. Control (2013). doi: 10.1109/ICoSC.2013.6750940.Google Scholar
- 16.S. Sheik Mohammed, Int. J. Civ. Environ. Eng. 2, 5 (2011).Google Scholar
- 17.B. Amrouche, N. Belhaouas, S. Achachera, and M. Tahar Boukadoum, Int. J. Hydrogen Energy (2016). doi: 10.1016/j.ijhydene.2016.04.147.Google Scholar
- 18.R. Poli, J. Kennedy, and T. Blackwell, Swarm Intell. (2007). doi: 10.1007/s11721-007-0002-0.Google Scholar
- 19.M.S. Couceiro, R.P. Rocha, and N.M.F. Ferreira, SIViP (2012). doi: 10.1007/s11760-012-0316-2.Google Scholar
- 20.A. Chouder, S. Silvestre, N. Sadaoui, and L. Rahmani, Simul. Model. Pract. Theory (2011). doi: 10.1016/j.simpat.2011.08.011.Google Scholar
- 21.H.L. Tsai and J.M. Lin, J. Electron. Mater. (2010). doi: 10.1007/s11664-009-0994-x.Google Scholar