Advertisement

Journal of Electronic Materials

, Volume 46, Issue 11, pp 6451–6460 | Cite as

Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

  • Douglas Yeboah
  • Jai Singh
Article

Abstract

Recently, the dependence of exciton diffusion length \( (L_{D} ) \) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein–Smoluchowski diffusion equation to derive analytical models for the diffusion lengths \( (L_{D} ) \) and diffusion coefficients \( (D) \) of singlet \( (S) \) and triplet \( (T) \) excitons in organic solids as functions of spectral overlap integral \( (J) \), photoluminescence (PL) quantum yield \( (\phi_{D} ) \), dipole moment \( (\mu_{T} ) \) and refractive index \( (n) \) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length \( (L_{D}^{S} ) \) increases with \( \phi_{D} \) and J, and decreases with n. Also, the triplet exciton diffusion length \( (L_{D}^{T} ) \) increases with \( \phi_{D} \) and decreases with \( \mu_{T} \). These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

Keywords

Exciton diffusion length diffusion coefficient Förster resonance energy transfer Dexter carrier transfer photophysical parameters photoactive materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, and K. Lee, Adv. Mater. 28, 7821 (2016).CrossRefGoogle Scholar
  2. 2.
    M.C. Scharber and N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013).CrossRefGoogle Scholar
  3. 3.
    R.F. Service, Science 332, 293 (2011).CrossRefGoogle Scholar
  4. 4.
    T. Kietzke, Adv. Optoelectron. 2007, 1 (2007).CrossRefGoogle Scholar
  5. 5.
    M.R. Narayan and J. Singh, Phys. Status Solidi C 9, 2386 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Divayana and X.W. Sun, Org. Electron. 11, 67 (2010).CrossRefGoogle Scholar
  7. 7.
    K. Feron, X. Zhou, W.J. Belcher, and P.C. Dastoor, J. Appl. Phys. 111, 044510 (2012).CrossRefGoogle Scholar
  8. 8.
    B.P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovolt. 15, 659 (2007).CrossRefGoogle Scholar
  9. 9.
    B.C. Thompson and J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Dennler, M. Scharber, and C.J. Brabec, Adv. Mater. 21, 1323 (2009).CrossRefGoogle Scholar
  11. 11.
    V. Stehr, B. Engels, C. Deibel, R.F.J. Fink, C. Deibel, and J. Pflaum, J. Chem. Theory Comput. 10, 1242 (2014).CrossRefGoogle Scholar
  12. 12.
    R.C. Powell and Z.G. Soos, J. Lumin. 11, 1 (1975).CrossRefGoogle Scholar
  13. 13.
    B.J. Mulder, Philips Res. Rep. 22, 142 (1967).Google Scholar
  14. 14.
    D. Kurrle and J. Pflaum, Appl. Phys. Lett. 92, 133306 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Tamura and Y. Matsuo, Chem. Phys. Lett. 598, 81 (2014).CrossRefGoogle Scholar
  16. 16.
    R.R. Lunt, N.C. Giebink, A. Anna, J.B. Benziger, and S.R. Forrest, J. Appl. Phys. 105, 053711 (2009).CrossRefGoogle Scholar
  17. 17.
    S.R. Scully and M.D. McGehee, J. Appl. Phys. 100, 034907 (2006).CrossRefGoogle Scholar
  18. 18.
    S.R. Yost, E. Hontz, S. Yeganeh, and T. Van Voorhis, J. Phys. Chem. C 116, 17369 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Terao, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 90, 103515 (2007).CrossRefGoogle Scholar
  20. 20.
    B. Movaghar, M. Grünewald, B. Ries, H. Bassler, and D. Würtz, Phys. Rev. B 33, 5545 (1986).CrossRefGoogle Scholar
  21. 21.
    M.C. Heiber and A. Dhinojwala, J. Chem. Phys. 137, 014903 (2012).CrossRefGoogle Scholar
  22. 22.
    S.M. Menke and R.J. Holmes, in 40th IEEE Photovoltaic Specialist Conference (2014), p. 51.Google Scholar
  23. 23.
    S. Raisys, K. Kazlauskas, M. Daskeviciene, T. Malinauskas, V. Getautis, and S. Jursenas, J. Mater. Chem. C 2, 4792 (2014).CrossRefGoogle Scholar
  24. 24.
    A.K. Topczak, R. Tobias, B. Engels, W. Brütting, and J. Pflaum, Phys. Rev. B 89, 201203(R) (2014).CrossRefGoogle Scholar
  25. 25.
    H.-Y. Hsu, J.H. Vella, J.D. Myers, J. Xue, and K.S. Schanze, J. Phys. Chem. C 118, 24282 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Shao and Y. Yang, Adv. Mater. 17, 2841 (2005).CrossRefGoogle Scholar
  27. 27.
    E. Engel, K. Leo, and M. Hoffmann, Chem. Phys. 325, 170 (2006).CrossRefGoogle Scholar
  28. 28.
    V. Bulović and S.R. Forrest, Chem. Phys. 210, 13 (1996).CrossRefGoogle Scholar
  29. 29.
    W.A. Luhman and R.J. Holmes, Adv. Funct. Mater. 21, 764 (2011).CrossRefGoogle Scholar
  30. 30.
    J.K. Bergemann and S.R. Forrest, Appl. Phys. Lett. 99, 243303 (2011).CrossRefGoogle Scholar
  31. 31.
    S.-B. Rim, R.F. Fink, J.C. Schöneboom, P. Erk, and P. Peumans, Appl. Phys. Lett. 91, 173504 (2007).CrossRefGoogle Scholar
  32. 32.
    D.E. Markov, J.C. Hummelen, P.W.M. Blom, and A.B. Sieval, Phys. Rev. B 72, 045216 (2005).CrossRefGoogle Scholar
  33. 33.
    S.R. Scully, P.B. Armstrong, C. Edder, J. Fréchet, and M.D. McGehee, Adv. Mater. 19, 2961 (2007).CrossRefGoogle Scholar
  34. 34.
    R.R. Lunt, J.B. Benziger, and S.R. Forrest, Adv. Mater. 22, 1233 (2010).CrossRefGoogle Scholar
  35. 35.
    B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Bredas, and J. Genoe, Adv. Funct. Mater. 22, 2987 (2012).CrossRefGoogle Scholar
  36. 36.
    S. Cook, A. Furube, R. Katoh, and L. Han, Chem. Phys. Lett. 478, 33 (2009).CrossRefGoogle Scholar
  37. 37.
    A.J. Lewis, A. Ruseckas, O.P.M. Gaudin, G.R. Webster, P.L. Burnand, and I.D.W. Samuel, Org. Electron. 7, 452 (2006).CrossRefGoogle Scholar
  38. 38.
    P.E. Shaw, A. Ruseckas, and I.D.W. Samuel, Adv. Mater. 20, 3516 (2008).CrossRefGoogle Scholar
  39. 39.
    Z. Masri, A. Ruseckas, E.V. Emelianova, L. Wang, A.K. Bansal, A. Matheson, H.T. Lemke, M.M. Nielsen, H. Nguyen, O. Coulembier, P. Dubois, D. Beljonne, and I.D.W. Samuel, Adv. Energy Mater. 3, 1445 (2013).CrossRefGoogle Scholar
  40. 40.
    O.V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P.W.M. Blom, and M.A. Loi, Energy Environ. Sci. 5, 6960 (2012).CrossRefGoogle Scholar
  41. 41.
    O. Mikhnenko, J. Lin, Y. Shu, J.E. Anthony, P.W.M. Blom, T.-Q. Nguyen, and M.A. Loi, Phys. Chem. Chem. Phys. 14, 14196 (2012).CrossRefGoogle Scholar
  42. 42.
    F.S. Steinbacher, R. Krause, A. Hunze, and A. Winnacker, Phys. Status Solidi A 209, 340 (2012).CrossRefGoogle Scholar
  43. 43.
    T. Förster, Discuss. Faraday Soc. 27, 7 (1959).CrossRefGoogle Scholar
  44. 44.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Baltimore: Springer, 2006), pp. 1–475.CrossRefGoogle Scholar
  45. 45.
    S.E. Braslavsky, E. Fron, H.B. Rodriguez, E.S. Roman, G.D. Scholes, G. Schweitzer, B. Valeur, and J. Wirz, Photochem. Photobiol. Sci. 7, 1444 (2008).CrossRefGoogle Scholar
  46. 46.
    M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals (Oxford: Oxford Univ Press, 1982).Google Scholar
  47. 47.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
  48. 48.
    J.A. Freund and T. Pöschel (eds.), in Stochastic Processes in Physics, Chemistry, Biology, Lecture Notes in Physics, vol 557 (Springer, Berlin, 2000), pp. 85–107.Google Scholar
  49. 49.
    R.C. Hilborn, Am. J. Phys. 50, 982986 (1982).CrossRefGoogle Scholar
  50. 50.
    A.C. Jacko and B.J. Powell, Chem. Phys. Lett. 508, 22 (2011).CrossRefGoogle Scholar
  51. 51.
    A.K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).CrossRefGoogle Scholar
  52. 52.
    Y. Kawamura, H. Sasabe, and C. Adachi, Jpn. J. Appl. Phys. 43, 7729 (2004).CrossRefGoogle Scholar
  53. 53.
    A. Nollau, M. Hoffmann, K. Floreck, T. Fritz, and K. Leo, J. Appl. Phys. 87, 7802 (2000).CrossRefGoogle Scholar
  54. 54.
    X. Cao, B. Hu, and P. Zhang, J. Phys. Chem. Lett. 4, 2334 (2013).CrossRefGoogle Scholar
  55. 55.
    Y. Noh, C. Lee, and J. Kima, J. Chem. Phys. 118, 2853 (2003).CrossRefGoogle Scholar
  56. 56.
    M. Tabachnyk, B. Ehrler, S. Bayliss, R.H. Friend, and N.C. Greenham, Appl. Phys. Lett. 103, 153302 (2013).CrossRefGoogle Scholar
  57. 57.
    Y. Liu, M.A. Summers, S.R. Scully, and M.D. McGehee, J. Appl. Phys. 99, 093521 (2006).CrossRefGoogle Scholar
  58. 58.
    Y. Tamai, H. Ohkita, H. Benten, and S. Ito, Chem. Mater. 26, 2733 (2014).CrossRefGoogle Scholar
  59. 59.
    T. Fushimi, A. Oda, H. Ohkita, and S. Ito, J. Phys. Chem. B 108, 18897 (2004).CrossRefGoogle Scholar
  60. 60.
    J.E. Kroeze, T.J. Savenije, L.P. Candeias, J.M. Warman, and L.D.A. Siebbeles, Sol. Energy Mater. Sol. Cells 85, 189 (2005).CrossRefGoogle Scholar
  61. 61.
    E.B. Namdas, A. Ruseckas, I.D.W. Samuel, S.-C. Lo, and P.L. Burn, Appl. Phys. Lett. 86, 091104 (2005).CrossRefGoogle Scholar
  62. 62.
    Y. Kawamura, K. Goushi, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005).CrossRefGoogle Scholar
  63. 63.
    G.P. Kushto, W.H. Kim, and Z.H. Kafafi, Appl. Phys. Lett. 86, 093502 (2005).CrossRefGoogle Scholar
  64. 64.
    S. Ko, D.H. Kim, A.L. Ayzner, S.C.B. Mannsfeld, E. Verploegen, A.M. Nardes, N. Kopidakis, M.F. Toney, and Z. Bao, Chem. Mater. 27, 1223 (2015).CrossRefGoogle Scholar
  65. 65.
    L.C. Groff, X. Wang, and J.D. McNeill, J. Phys. Chem. C 117, 25748 (2013).CrossRefGoogle Scholar
  66. 66.
    A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, S.E. Harth, A. Gügel, and K. Müllen, Phys. Rev. B 59, 15346 (1999).CrossRefGoogle Scholar
  67. 67.
    A. Holzhey, C. Uhrich, E. Brier, E. Reinhold, P. Bäuerle, K. Leo, and M. Hoffmann, J. Appl. Phys. 104, 064510 (2008).CrossRefGoogle Scholar
  68. 68.
    J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes, Appl. Phys. Lett. 68, 3120 (1996).CrossRefGoogle Scholar
  69. 69.
    M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M.R. Andersson, and O. Inganäs, Phys. Rev. B 61, 12957 (2000).CrossRefGoogle Scholar
  70. 70.
    J.E. Kroeze, T.J. Savenije, M.J.W. Vermeulen, and J.M. Warman, J. Phys. Chem. B 107, 7696 (2003).CrossRefGoogle Scholar
  71. 71.
    L. Lu¨er, H.J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.H. Huisman, and D. de Leeuw, Org. Electron. 5, 83 (2004).CrossRefGoogle Scholar
  72. 72.
    H. Choukri, A. Fischer, S. Forgeta, S. Chénais, and M. Castex, Appl. Phys. Lett. 89, 183513 (2006).CrossRefGoogle Scholar
  73. 73.
    D.R. Kozub, K. Vakhshouri, S.V. Kesava, C. Wang, A. Hexemer, and E.D. Gomez, Chem. Commun. 48, 5859 (2012).CrossRefGoogle Scholar
  74. 74.
    P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
  75. 75.
    M. Guide, J.D.A. Lin, C.M. Proctor, J. Chen, C. García-Cervera, and T.-Q. Nguyen, J. Mater. Chem. A 2, 7890 (2014).CrossRefGoogle Scholar
  76. 76.
    H.R. Kerp and E.E. van Faassen, Nord. Hydrol. 1, 1761 (1999).Google Scholar
  77. 77.
    A. Huijser, T.J. Savenije, J.E. Kroeze, and L.D.A. Siebbeles, J. Phys. Chem. B 109, 20166 (2005).CrossRefGoogle Scholar
  78. 78.
    J. Yang, F. Zhu, B. Yu, H. Wang, and D. Yan, Appl. Phys. Lett. 100, 103305 (2012).CrossRefGoogle Scholar
  79. 79.
    M. Sim, J. Shin, C. Shim, M. Kim, S.B. Jo, J.-H. Kim, and K. Cho, J. Phys. Chem. C 118, 760 (2013).CrossRefGoogle Scholar
  80. 80.
    J.D.A. Lin, O.V. Mikhnenko, T.S. van der Poll, G.C. Bazan, and T.-Q. Nguyen, Adv. Mater. 27, 2528 (2015).CrossRefGoogle Scholar
  81. 81.
    W. Zhang, J. Yu, W. Wen, and Y. Jiang, J. Lumin. 131, 1260 (2011).CrossRefGoogle Scholar
  82. 82.
    J. Wünsche, S. Reineke, B. Lüssem, and K. Leo, Phys. Rev. B 81, 245201 (2010).CrossRefGoogle Scholar
  83. 83.
    M. Lebental, H. Choukri, S. Chenais, S. Forget, A. Siove, B. Geffroy, and E. Tutis, Phys. Rev. B 79, 165318 (2009).CrossRefGoogle Scholar
  84. 84.
    W.A. Luhman and R.J. Holmes, Appl. Phys. Lett. 94, 153304 (2009).CrossRefGoogle Scholar
  85. 85.
    N. Matsusue, S. Ikame, Y. Suzuki, and H. Naito, J. Appl. Phys. 97, 123512 (2005).CrossRefGoogle Scholar
  86. 86.
    M. Samiullah, D. Moghe, U. Scherf, and S. Guha, Phys. Rev. B 82, 205211 (2010).CrossRefGoogle Scholar
  87. 87.
    G.M. Akselrod, P.B. Deotare, N.J. Thompson, J. Lee, W.A. Tisdale, M.A. Baldo, V.M. Menon, and V. Bulovic´, Nat. Commun. 5, 3646 (2014).CrossRefGoogle Scholar
  88. 88.
    A.D. Poletayev, J. Clark, M.W.B. Wilson, A. Rao, Y. Makino, S. Hotta, and R.H. Friend, Adv. Mater. 26, 919 (2014).CrossRefGoogle Scholar
  89. 89.
    P. Irkhin and I. Biaggio, Phys. Rev. Lett. 107, 017402 (2011).CrossRefGoogle Scholar
  90. 90.
    G. Schwartz, S. Reineke, T.C. Rosenow, K. Walzer, and K. Leo, Adv. Funct. Mater. 19, 1319 (2009).CrossRefGoogle Scholar
  91. 91.
    N.C. Giebink, Y. Sun, and S.R. Forrest, Org. Electron. 7, 375 (2006).CrossRefGoogle Scholar
  92. 92.
    V. Cleave, G. Yahioglu, P.L. Barny, R.H. Friend, and N. Tessler, Adv. Mater. 11, 285 (1999).CrossRefGoogle Scholar
  93. 93.
    X. Li and M.L. Tang, Chem. Commun. 53, 4429 (2017).CrossRefGoogle Scholar
  94. 94.
    X. Gong, S.-H. Lim, J.C. Ostrowski, D. Moses, C.J. Bardeen, and G.C. Bazan, J. Appl. Phys. 95, 948 (2004).CrossRefGoogle Scholar
  95. 95.
    J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Chem. Phys. 297, 39 (2004).CrossRefGoogle Scholar
  96. 96.
    Y. Kawamura, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Phys. Rev. Lett. 96, 017404 (2006).CrossRefGoogle Scholar
  97. 97.
    J. Singh, M.R. Narayan, and D. Ompong, J. Phys: Conf. Ser. 619, 012030 (2015).Google Scholar
  98. 98.
    X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Leiber, Nat. 409, 66 (2001).CrossRefGoogle Scholar
  99. 99.
    Y.A. Vlasov, N. Yao, and D.J. Norris, Adv. Mater. 11, 165 (1999).CrossRefGoogle Scholar
  100. 100.
    A. Ryasnyanskiy and I. Biaggio, Phys. Rev. B. 84, 193203 (2011).CrossRefGoogle Scholar
  101. 101.
    M.R. Narayan and J. Singh, J. Appl. Phys. 114, 073510 (2013).CrossRefGoogle Scholar
  102. 102.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations