Advertisement

Journal of Electronic Materials

, Volume 46, Issue 10, pp 5855–5865 | Cite as

Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

  • Ashutosh Sharma
  • Karabi DasEmail author
  • Siddhartha Das
Article

Abstract

Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

Keywords

Nano pulse electrodeposition solder joints lead-free microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng., R 27, 95 (2000).CrossRefGoogle Scholar
  2. 2.
    K.J. Puttlitz and K.A. Stalter, Handbook of Lead Free Solder Technology for Microelectronic Assemblies, 1st ed. (New York: Marcel Dekker, 2004).CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, Curr. Opin. Solid St. Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  4. 4.
    F. Guo, Composite lead-free electronic solders, Lead Free Electronic Solders, ed. K.N. Subramanian (New York: Springer, 2007), p. 129.CrossRefGoogle Scholar
  5. 5.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
  6. 6.
    T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).CrossRefGoogle Scholar
  7. 7.
    Y.S. Ki, J.M. Kim, and Y.E. Shin, JWJ 21, 92 (2003).Google Scholar
  8. 8.
    J.H. Park, H.Y. Lee, J.H. Jhun, C.S. Cheon, and J.P. Jung, JWJ 26, 43 (2008).Google Scholar
  9. 9.
    J.W. Moon, M.I. Kim, and J.P. Jung, JWJ 20, 99 (2002).Google Scholar
  10. 10.
    F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2007).Google Scholar
  11. 11.
    A. Lee and K.N. Subhramanian, J. Mater. Sci. 34, 1399 (2005).Google Scholar
  12. 12.
    J. Shen and Y.C. Chan, Microelectron. Reliab. 49, 223 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Sharma, D.E. Xu, J. Chow, M. Mayer, H.R. Sohn, and J.P. Jung, Electron. Mater. Lett. 11, 1072 (2015).CrossRefGoogle Scholar
  14. 14.
    X.L. Zhong and M. Gupta, J. Phys. D Appl. Phys. 41, 095403 (2008).CrossRefGoogle Scholar
  15. 15.
    P. Liu, P. Yao, and J. Liu, J. Electron. Mater. 37, 874 (2008).CrossRefGoogle Scholar
  16. 16.
    J. Wei, S.M.L. Nai, C.K. Wong, and M. Gupta, SIMTech Technical Reports 6, 29 (2005).Google Scholar
  17. 17.
    A.K. Gain, Y.C. Chan, and W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011).CrossRefGoogle Scholar
  18. 18.
    X. Liu, M. Huang, C.M.L. Wu, and L. Wang, J. Mater. Sci.: Mater. Electron. 21, 1046 (2010).Google Scholar
  19. 19.
    P. Babaghorbani, S.M.L. Nai, and M. Gupta, J. Mater. Sci.: Mater. Electron. 20, 571 (2009).Google Scholar
  20. 20.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, and G. Saad, J. Mater. Sci.: Mater. Electron. 24, 3210 (2013).Google Scholar
  21. 21.
    M.A.A. Mohd Salleh, A.B. Mustafa, H. Kamarudin, M. Bnhussain, M.H. Zan Hazizi, and F. Somidin, Phys. Procedia 22, 299 (2011).CrossRefGoogle Scholar
  22. 22.
    A. Sharma, A, B.G. Baek, and J.P. Jung. Mater. Des. 87, 370 (2015).CrossRefGoogle Scholar
  23. 23.
    A. Sharma, S. Bhattacharya, S. Das, H.J. Fecht, and K. Das, J. Alloy. Compd. 574, 609 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Sharma, S. Bhattacharya, S. Das, and K. Das, Metall. Mater. Trans. A 44A, 5587 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Bhattacharya, A. Sharma, S. Das, and K. Das, Metall. Mater. Trans. A 47A, 1292 (2016).CrossRefGoogle Scholar
  26. 26.
    A.P. Schuetze, W. Lewis, C. Brown, and W.J. Geerts, Am. J. Phys. 72, 149 (2004).CrossRefGoogle Scholar
  27. 27.
    J.H. Bickford and S. Nassar, Handbook of Bolts and Bolted Joints (New York: Marcel Dekker, 1998), pp. 84–86.Google Scholar
  28. 28.
    JCPDS File No. 04-0673-Sn PCPDF, International Center for Diffraction Data, 12 Campus Blvd., Newtown Square, PA 19073-3273 USA.Google Scholar
  29. 29.
    T. Subramanian, J. Shan, W. Huang, S. Raghavan, R. Small, C. Shang, and B. Scott, in MRS Proceedings (2003), pp. 161–166. doi: 10.1557/PROC-767-F3.3.
  30. 30.
    J.Y. Kim, S.K. Kim, U. Paik, T. Katoh, and J.G. Park, JKPS 41, 413 (2002).Google Scholar
  31. 31.
    F. Zhang, P. Wang, J. Koberstein, S. Khalid, and S.W. Chan, Surf. Sci. 563, 74 (2004).CrossRefGoogle Scholar
  32. 32.
    S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli, and S. Baroni, J. Phys. Chem. B 109, 22860 (2005).CrossRefGoogle Scholar
  33. 33.
    K. Masek, M. Vaclavu, P. Babor, and V. Matolın, Appl. Surf. Sci. 255, 6656 (2009).CrossRefGoogle Scholar
  34. 34.
    M. Skoda, M. Cabala, V. Chab, K.C. Prince, L. Sedlacek, T. Skala, F. Sutara, and V. Matolın, Appl. Surf. Sci. 254, 4375 (2008).CrossRefGoogle Scholar
  35. 35.
    V. Matolin, M. Cabala, V. Chab, I. Matolínova, K.C. Prince, M. Skoda, F. Sutara, T. Skala, and K. Veltrusk, Surf. Interface Anal. 40, 225 (2008).CrossRefGoogle Scholar
  36. 36.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng., R 44, 1 (2004).CrossRefGoogle Scholar
  37. 37.
    W. Xiao, Q. Guo, and E.G. Wang, Chem. Phys. Lett. 368, 527 (2003).CrossRefGoogle Scholar
  38. 38.
    B.F. Rivera, B.Y. Johnson, M.J. O’Keefe, and W.G. Fahrenholtz, Surf. Coat. Technol. 176, 349 (2004).CrossRefGoogle Scholar
  39. 39.
    B.Y. Johnson, J. Edington, A. Williams, and M.J. O’Keefe, Mater. Charact. 54, 41 (2005).CrossRefGoogle Scholar
  40. 40.
    A. Sharma, S. Bhattacharya, S. Das, and K. Das, Metall. Mater. Trans. A 45A, 4610 (2014).CrossRefGoogle Scholar
  41. 41.
    A. Sharma, S. Das, and K. Das, Electrodeposition of Composite Materials, ed. A.M.A Mohamed (InTech, 2016). doi: 10.5772/62036.
  42. 42.
    Mitigation Strategies for Tin Whiskers, A Report prepared by M. Osterman CALCE-EPSC, 2002.Google Scholar
  43. 43.
    K.W. Moon, M.E. Williams, C.E. Johnson, G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, in The Fourth Pacific Rim Conference on Advanced Materials and Processing Proceedings (2001), Honolulu, pp. 1115–1118.Google Scholar
  44. 44.
    A. Sharma, S. Bhattacharya, R. Sen, B.S.B. Reddy, and H.J. Fecht, Mater. Char. 68, 22 (2012).CrossRefGoogle Scholar
  45. 45.
    H. Baker, ASM Handbook, Vol. 3 (ASM International: Alloys Phase Diagrams, 1998).Google Scholar
  46. 46.
    Q.S. Mei and K. Lu, Prog. Mater Sci. 52, 1175 (2007).CrossRefGoogle Scholar
  47. 47.
    A.F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).CrossRefGoogle Scholar
  48. 48.
    H. Jiménez, L. Gil, M.H. Staia, and E.S. Puchi-Cabrera, Surf. Coat. Technol. 202, 2072 (2008).CrossRefGoogle Scholar
  49. 49.
    S. Kuiry, Advanced Scratch Testing for Evaluation of Coatings, Tribology and Mechanical Testing, Bruker Nano Surfaces Division, USA.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulRepublic of Korea
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations