Journal of Electronic Materials

, Volume 46, Issue 8, pp 5193–5200 | Cite as

Dielectric Study in the Microwave Range for Ceramic Composites Based on Sr2CoNbO6 and TiO2 Mixtures

  • J. E. V.  de Morais
  • R. G. M.  de Oliveira
  • A. J. N.  de Castro
  • J. C. Sales
  • M. A. S. SilvaEmail author
  • J. C. Goes
  • M. M. Costa
  • A. S. B. Sombra


In this work, we fabricated ceramic composites based on the composite matrix Sr2CoNbO6 (SCNO)-TiO2. The SCNO was synthesized by solid-state reaction, and x-ray diffraction was used for the structural characterization of this synthesis. We measured the dielectric properties in the microwave range by using the Hakki–Coleman method, as well as the thermal stability of these composites in this frequency range. We inserted TiO2 in an SCNO ceramic matrix in order to improve the thermal stability of SCNO. The cylindrical dielectric resonators were fabricated using concentrations of 5 wt.%, 10 wt.%, 20 wt.%, 40 wt.%, 60 wt.%, and 80 wt.%. The insertion of TiO2 improved the thermal stability, dielectric loss, and permittivity of the SCNO-based ceramic. These ceramic composites were evaluated as dielectric resonator antenna, and the performance of these materials presented a reflection coefficient below −10 dB, gain above 2.5 dBi, and efficiency above 60%.


SCNO dielectric properties microwave range  thermal-stability composite ceramic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127), Central Analítica UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES and CNPq (Process: 402561/2007-4, Edital MCT/CNPq No. 10/2007) for providing financial support.

Supplementary material

11664_2017_5541_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)


  1. 1.
    K.M. Luk and K.W. Leung, Dielectric Resonator Antennas (Chichester: Research Studies Press, 2003).Google Scholar
  2. 2.
    S.K.K. Dash, T. Khan, and A. De, Int. J. RF Microw. Comput. Eng. 27, e21069 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Petosa, Dielectric Resonator Antenna Handbook (Norwood: Artech House, 2007).Google Scholar
  4. 4.
    D. Kajfez and P. Guillon, Dielectric resonators, 2nd ed. (Tucker: Noble Publishing Corporation, 1998).Google Scholar
  5. 5.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Amsterdam: Elsevier, 2010).Google Scholar
  6. 6.
    A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Applications (New York: Wiley, 2003).CrossRefGoogle Scholar
  7. 7.
    S. Vasala and M. Karppinen, Prog. Solid State Chem. 43, 1 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Hamada, M. Kato, T. Noji, and Y. Koike, Phys. C Supercond. 470, S766 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Tachibana, Solid State Commun. 152, 849 (2012).CrossRefGoogle Scholar
  10. 10.
    O. Faran and V. Volterra, Phys. C Supercond. 255, 329 (1995).CrossRefGoogle Scholar
  11. 11.
    P.P. Dawes and N.W. Grimes, Solid State Commun. 16, 139 (1975).CrossRefGoogle Scholar
  12. 12.
    C.J. Howard, B.J. Kennedy, and P.M. Woodward, Acta Crystallogr. Sect. B Struct. Sci. 59, 463 (2003).CrossRefGoogle Scholar
  13. 13.
    G.J. Wang, C.C. Wang, S.G. Huang, X.H. Sun, C.M. Lei, T. Li, and L.N. Liu, AIP Adv. 3, 22109 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Bashir and R. Shaheen, Solid State Sci. 13, 993 (2011).CrossRefGoogle Scholar
  15. 15.
    J.M. Rendón Ramírez, O.A. Almanza, M.R. Cardona, D.A. Landínez Téllez, and J. Roa-Rojas, Int. J. Mod. Phys. B 27, 1350171 (2013).CrossRefGoogle Scholar
  16. 16.
    C.L. Huang, J.J. Wang, and C.Y. Huang, J. Am. Ceram. Soc. 90, 1487 (2007).CrossRefGoogle Scholar
  17. 17.
    R.V.B. Campos, C.L. Bezerra, L.N.L. Oliveira, D.X. Gouveia, M.A.S. Silva, and A.S.B. Sombra, J. Electron. Mater. 44, 4220 (2015).CrossRefGoogle Scholar
  18. 18.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967).CrossRefGoogle Scholar
  19. 19.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  20. 20.
    B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
  21. 21.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970).CrossRefGoogle Scholar
  22. 22.
    M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, J. Appl. Phys. 112, 74106 (2012).CrossRefGoogle Scholar
  23. 23.
    L. Bleicher, J.M. Sasaki, and C.O. Paiva, Santos. J. Appl. Crystallogr. 33, 1189 (2000).CrossRefGoogle Scholar
  24. 24.
    C. Pascoal, R. Machado, and V.C. Pandolfelli, Cerâmica 48, 61 (2002).CrossRefGoogle Scholar
  25. 25.
    C.L. Huang, J.J. Wang, and C.Y. Huang, Mater. Lett. 59, 3746 (2005).CrossRefGoogle Scholar
  26. 26.
    A. Chaouchi, S. Marinel, M. Aliouat, and S. D’Astorg, J. Eur. Ceram. Soc. 27, 2561 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Nath, S. Sen, K. Banerjee, A. Ghosh, and H.S. Tripathi, Ceram. Int. 39, 227 (2013).CrossRefGoogle Scholar
  28. 28.
    X. Lu, G. Li, J.Y. Kim, K.D. Meinhardt, and V.L. Sprenkle, J. Power Sources 295, 167 (2015).CrossRefGoogle Scholar
  29. 29.
    D.M. Pozar, Microwave Engineering (Delhi: Wiley India, 2012).Google Scholar
  30. 30.
    C.A. Balanis, Antenna Theory: Analysis and Design (New York: Wiley, 2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • J. E. V.  de Morais
    • 1
    • 2
  • R. G. M.  de Oliveira
    • 1
    • 2
  • A. J. N.  de Castro
    • 1
    • 2
  • J. C. Sales
    • 1
    • 2
  • M. A. S. Silva
    • 2
    Email author
  • J. C. Goes
    • 2
  • M. M. Costa
    • 3
  • A. S. B. Sombra
    • 2
  1. 1.Telecommunication Engineering Department (UFC)FortalezaBrazil
  2. 2.Physics DepartmentTelecommunication, Science and Engineering of Materials Laboratory (LOCEM)FortalezaBrazil
  3. 3.Institute of Physics, LACANMUFMTCuiabáBrazil

Personalised recommendations