Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3484–3490 | Cite as

Facile Synthesis of Ultrafine Gd2O3 Nanoparticles by Polyol Microwave Method

  • Le Huu Trinh
  • Tran Thai Hoa
  • Nguyen Van Hieu
  • Nguyen Duc Cuong
Article

Abstract

Gd2O3 nanoparticles have been quickly synthesized by a modified polyol method with microwave assistance. Triethylene glycol (TEG) was used as solvent and surfactant stabilizing agent. Systematic characterization of the TEG-coated gadolinium oxide nanoparticles (Gd2O3@TEG) showed that average particle size of 1 nm, 5 nm, and 10 nm could be obtained by changing some synthesis conditions. It was found that, after thermal treatment at 700°C, Gd2O3 nanoparticles showed uniform spherical shape with unchanged average particle size in comparison with the Gd2O3@TEG precursor. This approach is simple and rapid and can be easily scaled up and potentially extended to synthesis of other oxides.

Keywords

Gd2O3 monodisperse nanoparticles polyol microwave method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by Vietnam’s National Foundation for Science and Technology Development (NAFOSTED, Code 104.06-2014.87).

References

  1. 1.
    D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.T. Loan, and T.D. Hien, J. Sci. Adv. Mater. Dev. 1, 193 (2016).Google Scholar
  2. 2.
    X. Qu, J. Dai, J. Tian, X. Huang, Z. Liu, Z. Shen, and P. Wang, J. Alloys Compd. 469, 332 (2009).CrossRefGoogle Scholar
  3. 3.
    C. Xu and X. Qu, NPG Asia Mater. 6, e90 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Ahab, F. Rohman, F. Iskandar, F. Haryanto, and I. Arif, Adv. Powder Technol. 27, 1800 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Yang, H. Gao, Y. Wang, S. Xin, Y. He, Y. Wang, and W. Zeng, Mater. Res. Bull. 48, 37 (2013).CrossRefGoogle Scholar
  6. 6.
    C.R. Michel, N.L.L. Contreras, and A.H.M. Preciado, Sens. Actuators B 177, 390 (2013).CrossRefGoogle Scholar
  7. 7.
    M.M. Abdullah, M.M. Rahman, H. Bouzid, M. Faisal, and S.B. Khan, J. Rare Earth 33, 214 (2015).CrossRefGoogle Scholar
  8. 8.
    Z. Xueping, X. Guo, L. Shenglin, F. Xin, and Z. Jiaojiao, Int. J. Hydrog. Energy 37, 8402 (2012).CrossRefGoogle Scholar
  9. 9.
    A.P. Jadhav, J.H. Oh, S.W. Park, H. Choi, B.K. Moon, B.C. Choi, K. Jang, J.H. Jeong, S.S. Yi, and J.H. Kim, Curr. Appl. Phys. 16, 1374 (2016).CrossRefGoogle Scholar
  10. 10.
    J.-L. Bridot, A.-C. Faure, S. Laurent, C. Rivière, C. Billotey, B. Hiba, M. Janier, V. Josserand, J.-L. Coll, L.V. Elst, R. Muller, S. Roux, P. Perriat, and O. Tillement, J. Am. Chem. Soc. 129, 5076 (2007).CrossRefGoogle Scholar
  11. 11.
    B.K. Cha, S.J. Lee, P. Muralidharan, J.Y. Kim, D.K. Kim, D.H. Lee, J.I. Yun, and G. Cho, Nucl. Instrum. Methods A 619, 174 (2010).CrossRefGoogle Scholar
  12. 12.
    G. Li, Y. Liang, M. Zhang, and D. Yu, CrystEngComm 16, 6670 (2014).CrossRefGoogle Scholar
  13. 13.
    L.B.T. La, Y.-K. Leong, H.P. Watts, P.-I. Au, K.J. Hayward, and L.-C. Zhang, Colloids Surf. A 506, 13 (2016).CrossRefGoogle Scholar
  14. 14.
    B.W. Chieng and Y.Y. Loo, Mater. Lett. 73, 78 (2012).CrossRefGoogle Scholar
  15. 15.
    P. Vahdatkhah, H.R.M. Hosseini, A. Khodaei, A.R. Montazerabadi, R. Irajirad, M.A. Oghabian, and H. Delavari, Chem. Phys. 453–454, 35 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Muller, O. Heim, M. Panneerselvam, and M. Willert-Porada, Mater. Res. Bull. 40, 2153 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Thongtem, A. Phuruangrat, D.J. Ham, J.S. Lee, and S. Thongtem, CrystEngComm 12, 2962 (2010).CrossRefGoogle Scholar
  18. 18.
    S. Majeed and S.A. Shivashankar, J. Mater. Chem. B 2, 5585 (2014).CrossRefGoogle Scholar
  19. 19.
    K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, J.J. Lee, S. Jin, J.S. Baeck, Y. Chang, T.J. Kim, J.E. Bae, K.S. Chae, and G.H. Lee, ACS Appl. Mater. Interfaces 3, 3325 (2011).CrossRefGoogle Scholar
  20. 20.
    S.-H. Wu and D.-H. Chen, J. Colloids Interface Sci. 259, 282 (2003).CrossRefGoogle Scholar
  21. 21.
    S. Chaudhary, S. Kumar, and S.K. Mehta, J. Mater. Chem. C 3, 8824 (2015).CrossRefGoogle Scholar
  22. 22.
    H. Zou, L. Melro, T. de Camargo Chaparro, I.R. de Souza Filho, D. Ananias, E. Bourgeat-Lami, A.M. de Santos, and A. Barros-Timmons, Appl. Surf. Sci. 394, 519 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Liu, S. Zhang, X. Dong, and J. Wang, J. Nanomater. 2010, 5 (2010).Google Scholar
  24. 24.
    R.K. Tamrakar, D.P. Bisen, and N. Bramhe, Luminescence 30, 668 (2015).CrossRefGoogle Scholar
  25. 25.
    D. Xu, Y. Zhang, D. Zhang, and S. Yang, CrystEngComm 15, 1106 (2015).CrossRefGoogle Scholar
  26. 26.
    L. Faucher, M. Tremblay, J. Lagueux, Y. Gossuin, and M.-A. Fortin, ACS Appl. Mater. Interfaces 4, 4506 (2012).CrossRefGoogle Scholar
  27. 27.
    T.S. Atabaev, J.H. Lee, D.-W. Han, H.-K. Kim, and Y.-H. Hwang, RSC Adv. 4, 34343 (2014).CrossRefGoogle Scholar
  28. 28.
    T.-D. Nguyen, C.-T. Dinh, and T.-O. Do, Inorg. Chem. 50, 1309 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.College of SciencesHue UniversityHue CityVietnam
  2. 2.Faculty of Hospitality and TourismHue UniversityHue CityVietnam
  3. 3.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations