Journal of Electronic Materials

, Volume 46, Issue 6, pp 3512–3517 | Cite as

Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

  • Manh-Hung Chu
  • Liang Tian
  • Ahmad Chaker
  • Evgenii Skopin
  • Valentina Cantelli
  • Toufik Ouled
  • Raphaël Boichot
  • Alexandre Crisci
  • Sabine Lay
  • Marie-Ingrid Richard
  • Olivier Thomas
  • Jean-Luc Deschanvres
  • Hubert Renevier
  • Dillon Fong
  • Gianluca Ciatto
Article

Abstract

ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure–property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors’ distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

Keywords

ZnO synchrotron radiation in situ ALD XANES simulations 

References

  1. 1.
    S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Janotti and G.C. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).CrossRefGoogle Scholar
  3. 3.
    C.Y. Lee, et al., Semicond. Sci. Technol. 25, 105008 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Jin, et al., Sci. Rep. 3, 2140 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Ren, et al., Chem. Soc. Rev. 41, 4909 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Schmidt-Mende and J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. Kuang, et al., Rep. Prog. Phys. 76, 106502 (2013).CrossRefGoogle Scholar
  9. 9.
    T. Tynell and M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Luka, M. Godlewski, E. Guziewicz, P. Stakhira, V. Cherpak, and D. Volynyuk, Semicond. Sci. Technol. 27, 074006 (2012).CrossRefGoogle Scholar
  11. 11.
    M.-J. Chen, J.-R. Yang, and M. Shiojiri, Semicond. Sci. Technol. 27, 074005 (2012).CrossRefGoogle Scholar
  12. 12.
    J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).CrossRefGoogle Scholar
  13. 13.
    D.D. Fong, J.A. Eastman, S.K. Kim, T.T. Fister, M.J. Highland, P.M. Baldo, and P.H. Fuoss, Appl. Phys. Lett. 97, 191904 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Boichot, et al., Chem. Mater. 28, 592 (2016).CrossRefGoogle Scholar
  15. 15.
    M.H. Chu, L. Tian, A. Chaker, V. Cantelli, T. Ouled, R. Boichot, A. Crisci, S. Lay, M.-I. Richard, O. Thomas, J.-L. Deschanvres, H. Renevier, D.D. Fong, and G. Ciatto, Cryst. Growth Des. 16, 5339 (2016).CrossRefGoogle Scholar
  16. 16.
    The reactor has been designed and built with the guidance of Mr. Dominique de Barros.Google Scholar
  17. 17.
    G. Ciatto, M.H. Chu, P. Fontaine, N. Aubert, H. Renevier, and J.L. Deschanvres, Thin Solid Films 617, 48 (2016).CrossRefGoogle Scholar
  18. 18.
    P. Fontaine, G. Ciatto, N. Aubert, and M. Goldmann, Sci. Adv. Mater. 6, 2312 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Brouder, J. Phys. Condens. Matter 2, 701 (1990).CrossRefGoogle Scholar
  20. 20.
    G. Ciatto, F. d’Acapito, F. Boscherini, and S. Mobilio, J. Synchrotron Radiat. 11, 278 (2004).CrossRefGoogle Scholar
  21. 21.
    O. Bunau and Y. Joly, J. Phys. Condens. Matter 21, 345501 (2009).CrossRefGoogle Scholar
  22. 22.
    G.E. Kimball and G.H. Shortley, Phys. Rev. 45, 815 (1934).CrossRefGoogle Scholar
  23. 23.
    H. Iwanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci. 35, 2451 (2000).CrossRefGoogle Scholar
  24. 24.
    M. Malvestuto, et al., Phys. Rev. B 71, 075318 (2005).CrossRefGoogle Scholar
  25. 25.
    R.L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004).CrossRefGoogle Scholar
  26. 26.
    A.R. Chetal, P. Mahto, and P.R. Sarode, J. Phys. Chem. Solids 49, 279 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Manh-Hung Chu
    • 1
    • 6
  • Liang Tian
    • 2
  • Ahmad Chaker
    • 2
  • Evgenii Skopin
    • 2
  • Valentina Cantelli
    • 2
  • Toufik Ouled
    • 3
  • Raphaël Boichot
    • 4
  • Alexandre Crisci
    • 4
  • Sabine Lay
    • 4
  • Marie-Ingrid Richard
    • 3
  • Olivier Thomas
    • 3
  • Jean-Luc Deschanvres
    • 2
  • Hubert Renevier
    • 2
  • Dillon Fong
    • 5
  • Gianluca Ciatto
    • 1
  1. 1.Beamline SIRIUSSynchrotron SOLEILGif-sur-YvetteFrance
  2. 2.University Grenoble AlpesLMGPGrenobleFrance
  3. 3.Aix-Marseille UniversityCNRSMarseilleFrance
  4. 4.University Grenoble Alpes and CNRSSIMAPGrenobleFrance
  5. 5.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  6. 6.International Training Institute for Materials ScienceHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations