Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

Abstract

4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. PE hysteresis loops measured at room temperature showed maximum 2P r of 48 μC/cm2, large enough for wide read margins. PE loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

References

  1. 1.

    T. Jardiel, A.C. Caballero, and M. Villegas, J. Ceram. Soc. Jpn. 116, 511 (2008).

    Article  Google Scholar 

  2. 2.

    E.K. Choi, S.S. Kim, J.K. Kim, J.C. Bae, W.-J. Kim, Y.-I. Lee, and T. Kwon Song, Jpn. J. Appl. Phys. 43, 237 (2004).

    Article  Google Scholar 

  3. 3.

    H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, T. Kojima, and H. Funakubo, Appl. Phys. Lett. 81, 2229 (2002).

    Article  Google Scholar 

  4. 4.

    Q.-Y. Tang, Y.-M. Kan, Y.-G. Li, G.-J. Zhang, and P.-L. Wang, Scr. Mater. 54, 2075 (2006).

    Article  Google Scholar 

  5. 5.

    Y. Noguchi and M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001).

    Article  Google Scholar 

  6. 6.

    W. Yunyi, W. Lei, H. Zhiquiang, and L. Tao, Adv. Mater. Res. 548, 333 (2012).

    Article  Google Scholar 

  7. 7.

    A.R. Chaudhuri, A. Laha, and S.B. Krupanidhi, Solid State Commun. 133, 611 (2005).

    Article  Google Scholar 

  8. 8.

    C. Fu, Z. Huang, J. Li, and D. Guo, J. Electron. Mater. 39, 258 (2010).

    Article  Google Scholar 

  9. 9.

    M. Shimazu, J. Tanaka, K. Muramatsu, and M. Tsukioka, J. Solid State Chem. 35, 402 (1980).

    Article  Google Scholar 

  10. 10.

    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).

    Article  Google Scholar 

  11. 11.

    U. Chon, H.M. Jang, M.G. Kim, and C.H. Chang, Phys. Rev. Lett. 89, 087601 (2002).

    Article  Google Scholar 

  12. 12.

    F. Yang, Y. Guo, Z. Zong, X. Hao, Y. Shi, and M. Tang, J. Electron. Mater. 45, 3540 (2016).

    Article  Google Scholar 

  13. 13.

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  14. 14.

    P. Chandra and P.B. Littlewood, Physics of Ferroelectrics, ed. K. Rabe, C.H. Ahn, and J.-M. Triscone (Berlin: Springer, 2007), p. 69.

    Google Scholar 

  15. 15.

    R.A.R. Young, D.T. Clark, J.D. Cormack, A.E. Murphy, D.A. Smith, R.F. Thompson, E.P. Ramsay, and S. Finney, Mater. Sci. Forum 740–742, 1065 (2013).

    Article  Google Scholar 

  16. 16.

    D.J. Spry, P.G. Neudeck, L. Chen, D. Lukco, C.W. Chang, and G.M. Beheim, IEEE Electron Device Lett. 37, 625 (2016).

    Article  Google Scholar 

  17. 17.

    L. Lanni, B.G. Malm, M. Östling, and C.-M. Zetterling, Mater. Sci. Forum 821–823, 910 (2015).

    Article  Google Scholar 

  18. 18.

    M. Östling, S.-M. Koo, C.-M. Zetterling, S. Khartsev, and A. Grishin, Thin Solid Films 469–470, 444 (2004).

    Article  Google Scholar 

  19. 19.

    F. Zhang, Y.-C. Perng, J.H. Choi, T. Wu, T.-K. Chung, G.P. Carman, C. Locke, S. Thomas, S.E. Saddow, and J.P. Chang, J. Appl. Phys. 109, 124109 (2011).

    Article  Google Scholar 

  20. 20.

    L. Song, Y. Chen, G. Wang, L. Yang, J. Ge, X. Dong, P. Xiang, Y. Zhang, and X. Tang, J. Am. Ceram. Soc. 97, 3048 (2014).

    Article  Google Scholar 

  21. 21.

    P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, Proc. IEEE 90, 1065 (2002).

    Article  Google Scholar 

  22. 22.

    S. Li, X.L. Zhong, Y.R. Jia, J.B. Wang, B. Li, C.B. Tan, and Y.C. Zhou, Thin Solid Films 591, 126 (2015).

    Article  Google Scholar 

  23. 23.

    K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R.G. Elliman, J. Appl. Phys. 75, 232 (1993).

    Article  Google Scholar 

  24. 24.

    J.-L. Cao, A. Solbach, U. Klemradt, T. Weirich, J. Mayer, H. Horn-Solle, U. Böttger, P.J. Schorn, T. Schneller, and R. Waser, J. Appl. Phys. 99, 114107 (2006).

    Article  Google Scholar 

  25. 25.

    A.K. Tagantsev, Integr. Ferroelectr. 16, 237 (1997).

    Article  Google Scholar 

  26. 26.

    S.S. Eaton, D.B. Butler, M. Parris, D. Wilson, and H. McNeillie, Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 130, 329 (1988).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Knut and Alice Wallenberg Foundation for funding this research as a part of the Working on Venus project. The authors thank Gunnar Malm for valuable feedback while writing the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mattias Ekström.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekström, M., Khartsev, S., Östling, M. et al. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide. Journal of Elec Materi 46, 4478–4484 (2017). https://doi.org/10.1007/s11664-017-5447-3

Download citation

Keywords

  • Ferroelectric
  • high temperature (HT)
  • memory device
  • silicon carbide (4H-SiC)
  • thin film
  • vanadium-doped bismuth titanate (BiTV)