Journal of Electronic Materials

, Volume 46, Issue 7, pp 4478–4484 | Cite as

Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

  • Mattias EkströmEmail author
  • Sergiy Khartsev
  • Mikael Östling
  • Carl-Mikael Zetterling
Open Access


4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. PE hysteresis loops measured at room temperature showed maximum 2P r of 48 μC/cm2, large enough for wide read margins. PE loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.


Ferroelectric high temperature (HT) memory device silicon carbide (4H-SiC) thin film vanadium-doped bismuth titanate (BiTV) 



The authors thank the Knut and Alice Wallenberg Foundation for funding this research as a part of the Working on Venus project. The authors thank Gunnar Malm for valuable feedback while writing the article.


  1. 1.
    T. Jardiel, A.C. Caballero, and M. Villegas, J. Ceram. Soc. Jpn. 116, 511 (2008).CrossRefGoogle Scholar
  2. 2.
    E.K. Choi, S.S. Kim, J.K. Kim, J.C. Bae, W.-J. Kim, Y.-I. Lee, and T. Kwon Song, Jpn. J. Appl. Phys. 43, 237 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, T. Kojima, and H. Funakubo, Appl. Phys. Lett. 81, 2229 (2002).CrossRefGoogle Scholar
  4. 4.
    Q.-Y. Tang, Y.-M. Kan, Y.-G. Li, G.-J. Zhang, and P.-L. Wang, Scr. Mater. 54, 2075 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Noguchi and M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001).CrossRefGoogle Scholar
  6. 6.
    W. Yunyi, W. Lei, H. Zhiquiang, and L. Tao, Adv. Mater. Res. 548, 333 (2012).CrossRefGoogle Scholar
  7. 7.
    A.R. Chaudhuri, A. Laha, and S.B. Krupanidhi, Solid State Commun. 133, 611 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Fu, Z. Huang, J. Li, and D. Guo, J. Electron. Mater. 39, 258 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Shimazu, J. Tanaka, K. Muramatsu, and M. Tsukioka, J. Solid State Chem. 35, 402 (1980).CrossRefGoogle Scholar
  10. 10.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).CrossRefGoogle Scholar
  11. 11.
    U. Chon, H.M. Jang, M.G. Kim, and C.H. Chang, Phys. Rev. Lett. 89, 087601 (2002).CrossRefGoogle Scholar
  12. 12.
    F. Yang, Y. Guo, Z. Zong, X. Hao, Y. Shi, and M. Tang, J. Electron. Mater. 45, 3540 (2016).CrossRefGoogle Scholar
  13. 13.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).CrossRefGoogle Scholar
  14. 14.
    P. Chandra and P.B. Littlewood, Physics of Ferroelectrics, ed. K. Rabe, C.H. Ahn, and J.-M. Triscone (Berlin: Springer, 2007), p. 69.CrossRefGoogle Scholar
  15. 15.
    R.A.R. Young, D.T. Clark, J.D. Cormack, A.E. Murphy, D.A. Smith, R.F. Thompson, E.P. Ramsay, and S. Finney, Mater. Sci. Forum 740–742, 1065 (2013).CrossRefGoogle Scholar
  16. 16.
    D.J. Spry, P.G. Neudeck, L. Chen, D. Lukco, C.W. Chang, and G.M. Beheim, IEEE Electron Device Lett. 37, 625 (2016).CrossRefGoogle Scholar
  17. 17.
    L. Lanni, B.G. Malm, M. Östling, and C.-M. Zetterling, Mater. Sci. Forum 821–823, 910 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Östling, S.-M. Koo, C.-M. Zetterling, S. Khartsev, and A. Grishin, Thin Solid Films 469–470, 444 (2004).CrossRefGoogle Scholar
  19. 19.
    F. Zhang, Y.-C. Perng, J.H. Choi, T. Wu, T.-K. Chung, G.P. Carman, C. Locke, S. Thomas, S.E. Saddow, and J.P. Chang, J. Appl. Phys. 109, 124109 (2011).CrossRefGoogle Scholar
  20. 20.
    L. Song, Y. Chen, G. Wang, L. Yang, J. Ge, X. Dong, P. Xiang, Y. Zhang, and X. Tang, J. Am. Ceram. Soc. 97, 3048 (2014).CrossRefGoogle Scholar
  21. 21.
    P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, Proc. IEEE 90, 1065 (2002).CrossRefGoogle Scholar
  22. 22.
    S. Li, X.L. Zhong, Y.R. Jia, J.B. Wang, B. Li, C.B. Tan, and Y.C. Zhou, Thin Solid Films 591, 126 (2015).CrossRefGoogle Scholar
  23. 23.
    K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R.G. Elliman, J. Appl. Phys. 75, 232 (1993).CrossRefGoogle Scholar
  24. 24.
    J.-L. Cao, A. Solbach, U. Klemradt, T. Weirich, J. Mayer, H. Horn-Solle, U. Böttger, P.J. Schorn, T. Schneller, and R. Waser, J. Appl. Phys. 99, 114107 (2006).CrossRefGoogle Scholar
  25. 25.
    A.K. Tagantsev, Integr. Ferroelectr. 16, 237 (1997).CrossRefGoogle Scholar
  26. 26.
    S.S. Eaton, D.B. Butler, M. Parris, D. Wilson, and H. McNeillie, Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 130, 329 (1988).Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Electronics, School of ICTKTH Royal Institute of TechnologyKistaSweden

Personalised recommendations