Journal of Electronic Materials

, Volume 46, Issue 7, pp 4596–4603 | Cite as

Fully Printed Memristors from Cu–SiO2 Core–Shell Nanowire Composites

  • Matthew J. Catenacci
  • Patrick F. Flowers
  • Changyong Cao
  • Joseph B. Andrews
  • Aaron D. Franklin
  • Benjamin J. Wiley
Article

Abstract

This article describes a fully printed memory in which a composite of Cu–SiO2 nanowires dispersed in ethylcellulose acts as a resistive switch between printed Cu and Au electrodes. A 16-cell crossbar array of these memristors was printed with an aerosol jet. The memristors exhibited moderate operating voltages (∼3 V), no degradation over 104 switching cycles, write speeds of 3 μs, and extrapolated retention times of 10 years. The low operating voltage enabled the programming of a fully printed 4-bit memristor array with an Arduino. The excellent performance of these fully printed memristors could help enable the creation of fully printed RFID tags and sensors with integrated data storage.

Keywords

Memristors printed electronics non-volatile memory copper nanowires nanowires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2017_5445_MOESM1_ESM.doc (404 kb)
Supplementary material 1 (DOC 404 kb)

References

  1. 1.
    K. Suganuma, Introduction to Printed Electronics (New York: Springer, 2013).Google Scholar
  2. 2.
    T.H. Van Osch, J. Perelaer, A.W. de Laat, and U.S. Schubert, Adv. Mater. 20, 343 (2008).CrossRefGoogle Scholar
  3. 3.
    P.H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, and A. Javey, Nano Lett. 13, 3864 (2013).CrossRefGoogle Scholar
  4. 4.
    F. Molina-Lopez, D. Briand, and N.F. de Rooij, Sens. Actuator B Chem. 166, 212 (2012).CrossRefGoogle Scholar
  5. 5.
    L. Yang, A. Rida, R. Vyas, and M.M. Tentzeris, IEEE Trans. Microwave Theory Tech. 55, 2894 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Facchetti, Chem. Mater. 23, 733 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Kopola, M. Tuomikoski, R. Suhonen, and A. Maaninen, Thin Solid Films 517, 5757 (2009).CrossRefGoogle Scholar
  8. 8.
    A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, and B.J. Wiley, Adv. Mater. 22, 3558 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T.-S. Kim, D. Lee, and S.H. Ko, Adv. Funct. Mater. 23, 4171 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Chang, X. Zhang, T. Ge, and J. Zhou, Org. Electron. 15, 701 (2014).CrossRefGoogle Scholar
  11. 11.
    A.M. Gaikwad, D.A. Steingart, T.N. Ng, D.E. Schwartz, and G.L. Whiting, Appl. Phys. Lett. 102, 233302 (2013).CrossRefGoogle Scholar
  12. 12.
    A.C. Arias, J. Daniel, B. Krusor, S. Ready, V. Sholin, and R. Street, J. Soc. Inf. Disp. 15, 485 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Magliulo, M. Mulla, M. Singh, E. Macchia, A. Tiwari, L. Torsi, and K. Manoli, J. Mater. Chem. C 3, 12347 (2015).CrossRefGoogle Scholar
  14. 14.
    S.-T. Han, Y. Zhou, and V.A.L. Roy, Adv. Mater. 25, 5425 (2013).CrossRefGoogle Scholar
  15. 15.
    H.-T. Lin, Z. Pei, J.-R. Chen, C.-P. Kung, Y.-C. Lin, C.-M. Tseng, and Y.-J. Chan, in 2007 IEEE International Electron Devices Meeting (IEEE, 2007), pp. 233–236.Google Scholar
  16. 16.
    U.S. Bhansali, M.A. Khan, and H.N. Alshareef, Microelectron. Eng. 105, 68 (2013).CrossRefGoogle Scholar
  17. 17.
    T.N. Ng, D.E. Schwartz, L.L. Lavery, G.L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, N. Alam, O. Hagel, J. Nilsson, and C. Karlsson, Sci. Rep. 2, 585 (2012).CrossRefGoogle Scholar
  18. 18.
    J.Y. Bak, S.W. Jung, and S.M. Yoon, Org. Electron. 14, 2148 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Kim, J.-M. Song, J.-S. Lee, and M.J. Lee, Nanotechnology 25, 014016 (2013).CrossRefGoogle Scholar
  20. 20.
    K.J. Baeg, D. Khim, J. Kim, B.D. Yang, M. Kang, S.W. Jung, I.K. You, D.Y. Kim, and Y.Y. Noh, Adv. Funct. Mater. 22, 2915 (2012).CrossRefGoogle Scholar
  21. 21.
    G.U. Siddiqui, M.M. Rehman, and K.H. Choi, Polymer 100, 102 (2016).CrossRefGoogle Scholar
  22. 22.
    M.M. Rehman, G.U. Siddiqui, J.Z. Gul, S.-W. Kim, J.H. Lim, and K.H. Choi, Sci. Rep. 6, 36195 (2016).CrossRefGoogle Scholar
  23. 23.
    P.A. Laplante and S.J. Ovaska, Real-Time Systems Design and Analysis: Tools for the Practitioner (Hoboken: Wiley, 2011).CrossRefGoogle Scholar
  24. 24.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).CrossRefGoogle Scholar
  25. 25.
    R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
  26. 26.
    N. Duraisamy, N.M. Muhammad, H.-C. Kim, J.-D. Jo, and K.-H. Choi, Thin Solid Films 520, 5070 (2012).CrossRefGoogle Scholar
  27. 27.
    D.-H. Lien, Z.-K. Kao, T.-H. Huang, Y.-C. Liao, S.-C. Lee, and J.-H. He, ACS Nano 8, 7613 (2014).CrossRefGoogle Scholar
  28. 28.
    S.K. Vishwanath and J. Kim, J. Mater. Chem. C 4, 10967 (2016).CrossRefGoogle Scholar
  29. 29.
    M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, and K.H. Choi, Microelectron. Eng. 103, 167 (2013).CrossRefGoogle Scholar
  30. 30.
    N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, and K.H. Choi, Curr. Appl. Phys. 13, 90 (2013).CrossRefGoogle Scholar
  31. 31.
    S. Zou and C. Michael, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (IEEE, 2014), pp. 441–446.Google Scholar
  32. 32.
    A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen, and M.J. Bailey, Nat. Mater. 14, 199 (2015).CrossRefGoogle Scholar
  33. 33.
    P.F. Flowers, M.J. Catenacci, and B.J. Wiley, Nanoscale Horiz. 1, 313 (2016).Google Scholar
  34. 34.
    S. Ye, A.R. Rathmell, Y.-C. Ha, A.R. Wilson, and B.J. Wiley, Small 10, 1771 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, and L.M. Liz-Marzán, J. Colloid Interface Sci. 283, 392 (2005).CrossRefGoogle Scholar
  36. 36.
    D.-H. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, and Y. Piao, ACS Appl. Mater. Interfaces 6, 3312 (2014).CrossRefGoogle Scholar
  37. 37.
    C. Schindler, M. Weides, M.N. Kozicki, and R. Waser, Appl. Phys. Lett. 92, 122910 (2008).CrossRefGoogle Scholar
  38. 38.
    C. Schindler, G. Staikov, and R. Waser, Appl. Phys. Lett. 94, 072109 (2009).CrossRefGoogle Scholar
  39. 39.
    S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.K. Choi, IEEE Trans. Electron. Devices 56, 696 (2009).CrossRefGoogle Scholar
  40. 40.
    J.W. Seo, J.-W. Park, K.S. Lim, S.J. Kang, Y.H. Hong, J.H. Yang, L. Fang, G.Y. Sung, and H.-K. Kim, Appl. Phys. Lett. 95, 133508 (2009).CrossRefGoogle Scholar
  41. 41.
    E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403 (2010).CrossRefGoogle Scholar
  42. 42.
    K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, Nano Lett. 12, 389 (2012).CrossRefGoogle Scholar
  43. 43.
    M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, and K.N. Salama, Microelectron. J. 44, 176 (2013).CrossRefGoogle Scholar
  44. 44.
    J.J. Yang, M.-X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W.-D. Li, W. Yi, D.A. Ohlberg, B.J. Choi, and W. Wu, Appl. Phys. Lett. 100, 113501 (2012).CrossRefGoogle Scholar
  45. 45.
    J. Zhou, K.-H. Kim, and W. Lu, IEEE Trans. Electron. Devices 61, 1369 (2014).CrossRefGoogle Scholar
  46. 46.
    M.N. Awais, H.C. Kim, Y.H. Doh, and K.H. Choi, Thin Solid Films 536, 308 (2013).CrossRefGoogle Scholar
  47. 47.
    P. Vilmi, M. Nelo, J.-V. Voutilainen, J. Palosaari, J. Pörhönen, S. Tuukkanen, H. Jantunen, J. Juuti, and T. Fabritius, Flex. Print. Electron. 1, 025002 (2016).CrossRefGoogle Scholar
  48. 48.
    K. Rahman, M. Mustafa, N. Muhammad, and K. Choi, Electron. Lett. 48, 1261 (2012).CrossRefGoogle Scholar
  49. 49.
    S. Zou, P. Xu, and M. Hamilton, Electron. Lett. 49, 829 (2013).CrossRefGoogle Scholar
  50. 50.
    G. Siddiqui, J. Ali, Y.-H. Doh, and K.H. Choi, Mater. Lett. 166, 311 (2016).CrossRefGoogle Scholar
  51. 51.
    A. Kim, K. Song, Y. Kim, and J. Moon, ACS Appl. Mater. Interfaces 3, 4525 (2011).CrossRefGoogle Scholar
  52. 52.
    M.N. Awais and K.H. Choi, Electron. Mater. Lett. 10, 601 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Matthew J. Catenacci
    • 1
  • Patrick F. Flowers
    • 1
  • Changyong Cao
    • 2
  • Joseph B. Andrews
    • 2
  • Aaron D. Franklin
    • 1
    • 2
  • Benjamin J. Wiley
    • 1
  1. 1.Department of ChemistryDuke UniversityDurhamUSA
  2. 2.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations