Advertisement

Journal of Electronic Materials

, Volume 46, Issue 8, pp 4798–4804 | Cite as

High Temperature Electronic and Thermal Transport Properties of EuGa2−x In x Sb2

  • Sevan Chanakian
  • Rochelle Weber
  • Umut Aydemir
  • Alim Ormeci
  • Jean-Pierre Fleurial
  • Sabah Bux
  • G. Jeffrey Snyder
Article
  • 136 Downloads

Abstract

The Zintl phase EuGa2Sb2 was synthesized via ball milling followed by hot pressing. The crystal structure of EuGa2Sb2 is comprised of a 3-D network of polyanionic [Ga2Sb2]2− tunnels filled with Eu cations that provide charge balance (Eu2+[Ga2Sb2]2−). Here we report the temperature-dependent resistivity, Hall Effect, Seebeck coefficient and thermal conductivity for EuGa2−x In x Sb2 (x = 0, 0.05, 0.1) from 300 K to 775 K. Experimental results demonstrate that the material is a p-type semiconductor. However, a small band gap (∼0.1 eV) prevents EuGa2Sb2 from having high zT at higher temperatures. Isoelectronic substitution of In on the Ga site leads to point defect scattering of holes and phonons, thus reducing thermal conductivity and resulting in a slight improvement in zT.

Keywords

EuGa2Sb2 thermoelectric zintl phase semiconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was performed partially at the Jet Propulsion Laboratory supported by the NASA Science Missions Directorate’s Radioisotope Power System’s Thermoelectric Technology Development project under contract with the NASA. U.A. acknowledges the financial assistance provided by The Scientific and Technological Research Council of Turkey. S.C. and U.A. thank Alexandra Zevalkink for her edits and discussions, Douglas Hofmann for speed of sound measurements, Kurt Star for his input during discussions and Stephanie Reyes, Prastuti Singh, and Eugene Vinitsky for their help finding literature. A.O. thanks Ulrike Nitzsche from IFW Dresden, Germany for technical help in computational work.

References

  1. 1.
    K. Yazawa, Y.R. Koh, and A. Shakouri, Appl. Energy 109, 1 (2013).CrossRefGoogle Scholar
  2. 2.
    K. Yazawa, M. Hao, B. Wu, A.K. Silaen, C.Q. Zhou, T.S. Fisher, and A. Shakouri, Energy Convers. Manag. 84, 244 (2014).CrossRefGoogle Scholar
  3. 3.
    N. Miljkovic and E.N. Wang, Sol. Energy 85, 2843 (2011).CrossRefGoogle Scholar
  4. 4.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (London: Taylor & Francis, 2005).CrossRefGoogle Scholar
  5. 5.
    H. Goldsmid, Materials 7, 2577 (2014).CrossRefGoogle Scholar
  6. 6.
    S.M. Kauzlarich, eds., Chemistry, Structure, and Bonding of Zintl Phases and Ions (New York: VCH Publishers Inc., 1996).Google Scholar
  7. 7.
    E. Toberer, A. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).CrossRefGoogle Scholar
  8. 8.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  9. 9.
    K. Guo, Q.-G. Cao, X.-J. Feng, M.-B. Tang, H.-H. Chen, X. Guo, L. Chen, Yu Grin, and J.-T. Zhao, Eur. J. Inorg. Chem. 2011, 4043 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Wang, X.-C. Liu, S.-Q. Xia, and X.-T. Tao, J. Am. Chem. Soc. 135, 11840 (2013).CrossRefGoogle Scholar
  11. 11.
    C.A. Cox, E.S. Toberer, A.A. Levchenko, S.R. Brown, G.J. Snyder, A. Navrotsky, and S.M. Kauzlarich, Chem. Mater. 21, 1354 (2009).CrossRefGoogle Scholar
  12. 12.
    H. Tamaki, H.K. Sato, and T. Kanno, Adv. Mater. 28, 10182 (2016).CrossRefGoogle Scholar
  13. 13.
    U. Aydemir, A. Zevalkink, A. Ormeci, Z.M. Gibbs, S. Bux, and G.J. Snyder, Chem. Mater. 27, 1622 (2015).CrossRefGoogle Scholar
  14. 14.
    K. Guo, Q. Cao, and J. Zhao, J. Rare Earth 31, 1029 (2013).CrossRefGoogle Scholar
  15. 15.
    U. Aydemir, A. Zevalkink, A. Ormeci, S. Bux, and G.J. Snyder, J. Mater. Chem. A 4, 1867 (2016).CrossRefGoogle Scholar
  16. 16.
    I. Schellenberg, M. Eul, and R. Pöttgen, Monatsh. Chem. 142, 875 (2011).CrossRefGoogle Scholar
  17. 17.
    N. Singh, R. Pöttgen, and U. Schwingenschlögl, J. Appl. Phys. 112, 103714 (2012).CrossRefGoogle Scholar
  18. 18.
    Program STOE WinXPOW (Darmstadt: Stoe & Cie GmbH, 2003)Google Scholar
  19. 19.
    K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.-P. Fleurial, B.B. Iberson, and G.J. Snyder, Rev. Sci. Instrum. 83, 123902 (2012).CrossRefGoogle Scholar
  20. 20.
    K.A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L.D. Chen, M.I. Fedorov, E. Muller, B.B. Iversena, and G.J. Snyder, Energy Environ. Sci. 8, 423 (2015).CrossRefGoogle Scholar
  21. 21.
    K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).CrossRefGoogle Scholar
  22. 22.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  23. 23.
    V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
  24. 24.
    H. Eschrig, K. Koepernik, and I. Chaplygin, J. Solid State Chem. 176, 482 (2003).CrossRefGoogle Scholar
  25. 25.
    M. Kohout, Int. J. Quantum Chem. 97, 651 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Kohout, Faraday Discuss. 135, 43 (2007).CrossRefGoogle Scholar
  27. 27.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press, 1995).Google Scholar
  28. 28.
    S. Raub and G. Jansen, Theor. Chem. Acc. 106, 223 (2001).CrossRefGoogle Scholar
  29. 29.
    A. Ormeci, H. Rosner, F.R. Wagner, M. Kohout, and Y. Grin, J. Phys. Chem. A 110, 1100 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Kohout, Program DGRID, Version 4.6 (Germany: Radebeul, 2011).Google Scholar
  31. 31.
    J. Emsley, The Elements (Oxford: Oxford University Press, 1998).Google Scholar
  32. 32.
    S.A. Arrhenius, Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre 1, 110 (1887)Google Scholar
  33. 33.
    S. Kasap, C. Koughia, H. Ruda, and R. Johanson, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap and P. Capper (Boston, MA: Springer US, 2007), pp. 19–45Google Scholar
  34. 34.
    A. Zevalkink, G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, and G.J. Snyder, Chem. Mater. 24, 2091 (2012).CrossRefGoogle Scholar
  35. 35.
    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar
  36. 36.
    M. Roufosse and P.G. Klemens, Phys. Rev. B 7, 5379 (1973).CrossRefGoogle Scholar
  37. 37.
    A. Zevalkink, W.G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G.J. Snyder, Energy Environ. Sci. 5, 9121 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Sevan Chanakian
    • 1
    • 2
  • Rochelle Weber
    • 1
  • Umut Aydemir
    • 1
    • 3
  • Alim Ormeci
    • 4
  • Jean-Pierre Fleurial
    • 2
  • Sabah Bux
    • 2
  • G. Jeffrey Snyder
    • 3
  1. 1.Department of Applied Physics and Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Thermal Energy Conversion Technologies GroupJet Propulsion LaboratoryPasadenaUSA
  3. 3.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Max Planck Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations