Skip to main content
Log in

Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs’ PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Fomin, Physics of Quantum Rings (Berlin: Springer, 2014).

    Book  Google Scholar 

  2. Y. Huang, Y. Puttisong, I.A. Buyanova, and W.M. Chen, Nano Res. 9, 602 (2016).

    Article  Google Scholar 

  3. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. Bof Bufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, and V. Zwiller, Phys. Rev. B. 82, 075309 (2010).

    Article  Google Scholar 

  4. K. Mukai, J. Nanosci. Nanotechnol. 14, 2148 (2014).

    Article  Google Scholar 

  5. C. Kloeffel and D. Loss, Annu. Rev. Condens. Matter Phys. 4, 51 (2013).

    Article  Google Scholar 

  6. H. Mizuta and T. Tanoue, The Physics and Application of Resonant Tunnelling Diodes (Cambridge: Cambridge University Press, 1995).

    Book  Google Scholar 

  7. Y.G. Gobato, J.M. Berroir, Y. Guldner, J.P. Vieren, F. Chevoir, and B. Vinter, Phys. Rev. B. 44, 13795 (1991).

    Article  Google Scholar 

  8. H.B. de Carvalho, M.J.S.P. Brasil, Y. Galvão Gobato, G.E. Marques, H.V.A. Galeti, M. Henini, and G. Hill, Appl. Phys. Lett. 90, 62120 (2007).

    Article  Google Scholar 

  9. L.F. dos Santos, Y. Galvão Gobato, G.E. Marques, M.J.S.P. Brasil, M. Henini, and R. Airey, Appl. Phys. Lett. 91, 073520 (2007).

    Article  Google Scholar 

  10. L.F. dos Santos, Y. Galvão Gobato, G.E. Marques, M.J.S.P. Brasil, M. Henini, and R. Airey, Appl. Phys. Lett. 92, 143505 (2008).

    Article  Google Scholar 

  11. Y. Galvão Gobato, H.V.A. Galeti, L.F. dos Santos, V. López-Richard, D.F. Cesar, G.E. Marques, M.J.S.P. Brasil, M. Orlita, J. Kunc, D.K. Maude, M. Henini, and R.J. Airey, Appl. Phys. Lett. 99, 233507 (2011).

    Article  Google Scholar 

  12. A. Vercik, Y. Galvão Gobato, and M.J.S.P. Brasil, J. Appl. Phys. 92, 1888 (2002).

    Article  Google Scholar 

  13. E.C. dos Santos, Y. Galvão Gobato, M.J.S.P. Brasil, D.A. Taylor, and M. Henini, Nanoscale Res. Lett. 6, 115 (2011).

    Article  Google Scholar 

  14. J. Araujo e Nobrega, V. Orsi Gordo, H.V.A. Galeti, Y. Galvão Gobato, M.J.S.P. Brasil, D. Taylor, M. Orlita, and M. Henini, Superlat. Microst. 88, 574 (2015).

  15. A. Slobodskyy, C. Gould, T. Slobodskyy, C.R. Becker, G. Schmidt, and L.W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003).

    Article  Google Scholar 

  16. H.B. de Carvalho, M.J.S.P. Brasil, V. Lopez-Richard, Y. Galvão Gobato, G.E. Marques, I. Camps, L.C.O. Dacal, M. Henini, L. Eaves, and G. Hill, Phys. Rev. B. 74, 041305 (2006).

    Article  Google Scholar 

  17. M. Ruth, C. Gould, and L.W. Molenkamp, Phys. Rev. B. 83, 155408 (2011).

    Article  Google Scholar 

  18. F.J. Teran, L. Eaves, L. Mansouri, H. Buhmann, D.K. Maude, M. Potemski, M. Henini, and G. Hill, Phys. Rev. B. 71, 161309 (2005).

    Article  Google Scholar 

  19. A. Patanè, A. Polimeni, L. Eaves, P.C. Main, M. Henini, YuV Dubrovskii, A.E. Belyaev, P.N. Brounkov, E.E. Vdovin, YuN Khanin, and G. Hill, J. Appl. Phys. 88, 2005 (2000).

    Article  Google Scholar 

  20. A. Polimeni, M. Henini, A. Patane, L. Eaves, and P.C. Main, Appl. Phys. Lett. 73, 1415 (1998).

    Article  Google Scholar 

  21. A. Patane, R.J.A. Hill, L. Eaves, P.C. Main, M. Henini, M.L. Zambrano, A. Levin, N. Mori, C. Hamaguchi, Y.V. Dubrovskii, E.E. Vdovin, D.G. Austing, S. Tarucha, and G. Hill, Phys. Rev. B. 65, 165308 (2002).

    Article  Google Scholar 

  22. A. Patane, P.C. Main, L. Eaves, A. Levin, M. Henini, and G. Hill, Phys. E 13, 170 (2002).

    Article  Google Scholar 

  23. F. Pulizzi, D. Walker, A. Patanè, L. Eaves, M. Henini, D. Granados, J.M. Garcia, V.V. Rudenkov, P.C.M. Christianen, J.C. Maan, P. Offermans, P.M. Koenraad, and G. Hill, Phys. Rev. B. 72, 085309 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Galvão Gobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsi Gordo, V., Gobato, Y.G., Galeti, H.V.A. et al. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices. J. Electron. Mater. 46, 3851–3856 (2017). https://doi.org/10.1007/s11664-017-5391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5391-2

Keywords

Navigation