Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3341–3344 | Cite as

Influence of Hydrothermal Temperature on the Optical Properties of Er-Doped SnO2 Nanoparticles

  • Pham  Van Tuan
  • Le Trung Hieu
  • La Quynh Nga
  • Ngo Ngoc Ha
  • Nguyen Duc Dung
  • Tran Ngoc Khiem
Article

Abstract

This work reports on crystallization and optical properties of SnO2:Er3+ with a fixed Er3+ concentration of 0.25 at.%, prepared by the hydrothermal method. Crystal structure and morphology of the materials were studied by x-ray diffraction (XRD) and field emission transmission electron microscopy. Characteristic light emission at 1.5 μm for radiative 4 I 13/2 → 4 I 15/2 transitions within the 4f electron shell of Er3+ ions was studied by photoluminescence (PL) and excitation spectroscopy. The optical bandgap of the nanoparticles was examined by ultraviolet--visible absorption measurements. SnO2:Er3+ nanoparticles were formed in single-phase tetragonal rutile structure by applying temperatures ranging from 120°C to 200°C during the hydrothermal synthesis. An average crystal size of 5 nm was estimated by the Scherrer equation using the XRD data and found to be independent from the investigated hydrothermal temperatures. Whereas, the Er3+-related PL intensities were found to increase strongly with the hydrothermal temperature.

Keywords

SnO2:Er3+ nanoparticles hydrothermal temperature crystal structure optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research is financially supported by the application-oriented fundamental research program, Project No. ĐT.NCCB- ĐHU'D.2011-G/01 and the Project No. B2015-01-99.

References

  1. 1.
    I. Maksimenko and P.J. Wellmann, Thin Solid Films 520, 1341 (2011).CrossRefGoogle Scholar
  2. 2.
    Y.J. Shin, Q. Zhang, and F. Hua, Thin Solid Films 516, 3167 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Robertson, J. Non. Cryst. Solids 354, 2791 (2008).CrossRefGoogle Scholar
  4. 4.
    C. Xu, Y. Jiang, D. Yi, S. Sun, and Z. Yu, J. Appl. Phys. 111, 063504 (2012).CrossRefGoogle Scholar
  5. 5.
    E.O. Igbinovia and P.A. Ilenikhena, Int. J. Phys. Sci. 5, 1770 (2010).Google Scholar
  6. 6.
    S.F. Bamsaoud, S.B. Rane, R.N. Karekar, and R.C. Aiyer, Sens. Actuat B-Chem. 153, 382 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Heilig, N. Barsan, U. Weimar, and W. Göpel, Sens. Actuat B-Chem. 58, 302 (1999).CrossRefGoogle Scholar
  8. 8.
    S.G. Ansari, Z.A. Ansari, R. Wahab, Y.S. Kim, G. Khang, and H.S. Shin, Biosens. Bioelectron. 23, 1838 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Sun, J. Xu, Y. Yu, P. Sun, F. Liu, and G. Lu, Sens. Actuat B-Chem. 169, 291 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Kong, H. Zhu, R. Li, W. Luo, and X. Chen, Opt. Lett. 34, 1873 (2009).CrossRefGoogle Scholar
  11. 11.
    D. Maestre, E. Herna, A. Cremades, M. Amati, and J. Piqueras, Cryst. Growth Des. 12, 2478 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Sambasivam, S.B. Kim, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, and T.K. Song, Curr. Appl. Phys. 10, 1383 (2010).CrossRefGoogle Scholar
  13. 13.
    Y. Zhai, Q. Zhao, Y. Han, M. Wang, and J. Yu, J. Mater. Sci.: Mater. Electron. 27, 677 (2016).Google Scholar
  14. 14.
    J. Zhang, X. Ma, Q. Qin, L. Shi, J. Sun, M. Zhou, B. Liu, and Y. Wang, Mater. Chem. Phys. 136, 320 (2012).CrossRefGoogle Scholar
  15. 15.
    C. Bouzidi, A. Moadhen, H. Elhouichet, and M. Oueslati, Appl. Phys. B Lasers Opt. 90, 465 (2008).CrossRefGoogle Scholar
  16. 16.
    S. Bhaumik, S.K. Ray, and A.K. Das, Phys. Status Solidi A 210, 2146 (2013).CrossRefGoogle Scholar
  17. 17.
    F.H. Aragón, J.A.H. Coaquira, P. Hidalgo, R. Cohen, L.C.C.M. Nagamine, S.W. Da Silva, P.C. Morais, and H.F. Brito, J. Nanoparticle Res. 15, 1341 (2013).CrossRefGoogle Scholar
  18. 18.
    P. Van Tuan, L.T. Hieu, L.Q. Nga, N.D. Dung, N.N. Ha, and T.N. Khiem, Phys. B 501, 34 (2016).CrossRefGoogle Scholar
  19. 19.
    K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, and A. Slaoui, J. Mater. Chem. C 2, 8235 (2014).CrossRefGoogle Scholar
  20. 20.
    A.L. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  21. 21.
    Y. Liu, W. Luo, H. Zhu, and X. Chen, J. Lumin. 131, 415 (2011).CrossRefGoogle Scholar
  22. 22.
    T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park, J. Phys. Chem. C 111, 4164 (2007).CrossRefGoogle Scholar
  23. 23.
    K.P. Gattu, K. Ghule, A.A. Kashale, V.B. Patil, D.M. Phase, R.S. Mane, S.H. Han, R. Sharma, and A.V. Ghule, RSC Adv. 5, 72849 (2015).CrossRefGoogle Scholar
  24. 24.
    R. Bargougui, K. Omri, A. Mhemdi, and S. Ammar, Adv. Mater. Lett. 6, 816 (2015).Google Scholar
  25. 25.
    A. Azam, S.S. Habib, N.A. Salah, and F. Ahmed, Int. J. Nanomedicine 8, 3875 (2013).CrossRefGoogle Scholar
  26. 26.
    P.G. Kik, M.J.A. de Dood, K. Kikoin, and A. Polman, Appl. Phys. Lett. 70, 1721 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Pham  Van Tuan
    • 1
  • Le Trung Hieu
    • 1
  • La Quynh Nga
    • 1
  • Ngo Ngoc Ha
    • 1
  • Nguyen Duc Dung
    • 2
  • Tran Ngoc Khiem
    • 1
  1. 1.International Institute for Materials ScienceHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Advanced Institute for Science and TechnologyHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations