Skip to main content
Log in

Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Solder joints between leads and printed circuit boards in thin small outline packages were produced with conventional Sn1.0Ag0.7Cu (SAC107) and Sn3.0Ag0.7Cu (SAC305) solders as well as various solder alloys with gradually increasing amounts of Bi (up to 3.0 wt.%) and In (up to 1.0 wt.%) within the SAC107 base solder. The reliability of soldered leads in temperature cycle (TC) tests improved most with solder alloys containing both Bi (1.6 wt.%) and In (0.5 wt.%). Microindentation and electron probe microanalysis mappings revealed that the effect originates from a combination of solution and precipitation strengthening of the initial SAC alloy. The distribution of inelastic strain accumulation (ISA), as a measure for degradation, was determined in the solder joints by finite element calculations. It was shown that defects in the solder proximal to the lead (<60–75 μm) strongly impact the reliability and provoke crack initiation around the defect where the highest ISA is located. In particular, similar TC performance can be expected for defect-free joints and for those whose defects exceed the threshold distance from the lead (>60–75 μm), which was underpinned by similar cracking characteristics along the lead–solder interface. The ISA was confirmed to be lower in SAC+Bi/In alloys owing to their enhanced elasto-plastic properties. Moreover, the addition of a thin Cu coating on the leads could improve the joint reliability, as suggested by the calculation of the ISA and the acceleration factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zacharias, Mater. Sci. Forum 615–617, 889 (2009).

    Article  Google Scholar 

  2. M. Abtew and G. Selvaduray, Mater. Sci. Eng., R 27, 95 (2000).

    Article  Google Scholar 

  3. K. Suganuma, MRS Bull. 26, 880 (2001).

    Article  Google Scholar 

  4. Y. Zhang, H. Zhu, M. Fujiwara, J. Xua, and M. Dao, Scripta Mater. 68, 607 (2013).

    Article  Google Scholar 

  5. F. Garofalo, Trans Metall Soc AIME 227, 351 (1963).

    Google Scholar 

  6. H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).

    Article  Google Scholar 

  7. R. Darveaux and C. Reichman, in Proceedings of the 57th IEEE Electronic Components and Technology Conference (2007). doi:10.1109/ECTC.2007.373872.

  8. S. Wiese, A. Schubert, H. Walter, R. Dukek, F. Feustel, E. Meusel, and B. Michel, in Proceedings of the 51st IEEE Electronic Components and Technology Conference (2001). doi:10.1109/ECTC.2001.927900.

  9. S. Wiese, E. Meusel, and K.J. Wolter, in Proceedings of the 53rd IEEE Electronic Components and Technology Conference (2003). doi:10.1109/ECTC.2003.1216277.

  10. M.M. Basit, M. Motalab, J.C. Suhling, and P. Lall, in Proceedings of the 14th Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2014). doi:10.1109/ITHERM.2014.6892272.

  11. P. Lall, D. Zhang, V. Yadava, and D. Locker, Microelectron. Reliab. 62, 4 (2016).

    Article  Google Scholar 

  12. X. Hu, Y. Li, Y. Liu, and Z. Min, J. Alloys Compd. 625, 241 (2015).

    Article  Google Scholar 

  13. A.A. El-Daly, A.M. El-Taher, and S. Gouda, J. Alloys Compd. 627, 268 (2015).

    Article  Google Scholar 

  14. M. Berthou, P. Retailleau, H. Frémont, A. Guédon-Gracia, and C. Jéphos-Davennel, Microelectron. Reliab. 49, 1267 (2009).

    Article  Google Scholar 

  15. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng., A 445–446, 73 (2007).

    Article  Google Scholar 

  16. S. Park, R. Dhakal, and J. Gao, J. Electron. Mater. 37, 1139 (2008).

    Article  Google Scholar 

  17. A. Hirose, T. Fujii, T. Imamura, and K.F. Kobayashi, Mater. Trans. 42, 794 (2001).

    Article  Google Scholar 

  18. H. Iwanishi, A. Hirose, T. Imamura, K. Tateyama, I. Mori, and K.F. Kobayashi, J. Electron. Mater. 32, 1540 (2003).

    Article  Google Scholar 

  19. T. Hiramori, M. Ito, Y. Tanii, A. Hirose, and K.F. Kobayashi, Mater. Trans. 44, 2375 (2003).

    Article  Google Scholar 

  20. A. Hirose, H. Yanagawa, E. Ide, and K.F. Kobayashi, Sci Technol Adv Mater 5, 267 (2004).

    Article  Google Scholar 

  21. Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K.F. Kobayashi, A. Yamaguchi, A. Furusawa, and K. Nishida, Mater. Trans. 45, 734 (2004).

    Article  Google Scholar 

  22. A. Yamaguchi, Y. Yamashita, A. Furusawa, K. Nishida, T. Hojo, Y. Sogo, A. Miwa, A. Hirose, and K.F. Kobayashi, Mater. Trans. 45, 1282 (2004).

    Article  Google Scholar 

  23. B.Z. Hong, J. Electron. Mater. 26, 814 (1997).

    Article  Google Scholar 

  24. D. Herkommer, J. Punch, and M. Reid, Microelectron. Reliab. 50, 116 (2010).

    Article  Google Scholar 

  25. X. Li and Z. Wang, J. Mater. Process. Technol. 183, 6 (2007).

    Article  Google Scholar 

  26. R. Dudek, W. Faust, J. Vogel, and B. Michel, in Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Micro-electronics and Micro-systems (2005). doi:10.1109/ESIME.2005.1502876.

  27. J. Eckermann, S. Mehmood, H.M. Davies, N.P. Lavery, S.G.R. Brown, J. Sienz, A. Jones, and P. Sommerfeld, Microelectron. Reliab. 54, 1235 (2014).

    Article  Google Scholar 

  28. S.M. Lee and K.W. Lee, Jpn. J. Appl. Phys. 35, L1515 (1996).

    Article  Google Scholar 

  29. X. Zhang, S.W. Ricky Lee, K.S. Choi, and Y.G. Kim, IEEE Trans. Adv. Packag. 25, 514 (2002).

    Article  Google Scholar 

  30. L.J. Ladani and A. Dasgupta, J. Electron. Packag. 130, 011008 (2008).

    Article  Google Scholar 

  31. T. Siewert, S. Liu, D.R. Smith, and J.C. Madeni, Properties of Lead-Free Solders, Release 4.0, National Institute of Standards and Technology and Colorado School of Mine. http://www.nist.gov/mml/msed/solder.cfm. Accessed 11 February 2002.

  32. Y.C. Chiou, Y.M. Jen, and S.H. Huang, Microelectron. Reliab. 51, 2319 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Structural Materials for Innovation” (Funding agency: JST).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Lis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lis, A., Nakanishi, K., Matsuda, T. et al. Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys. J. Electron. Mater. 46, 4326–4343 (2017). https://doi.org/10.1007/s11664-017-5384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5384-1

Keywords

Navigation