Journal of Electronic Materials

, Volume 46, Issue 6, pp 3463–3471 | Cite as

Self-Assembled Structures of Benzoic Acid on Au(111) Surface

Article

Abstract

Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O–H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.

Keywords

Self-assembly gold single crystals cyclic voltammetry EC-STM benzoic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.V. Barth, G. Costantini, and K. Kern, Nature 437, 671 (2005).CrossRefGoogle Scholar
  2. 2.
    L. Kampschulte, Ph.D. Thesis, Ludwig-Maximilians-Universität München, 2006.Google Scholar
  3. 3.
    J.A.A.W. Elemans, S. Lei, and S. De Feyter, Angew. Chem. Int. Ed. Engl. 48, 7298 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Balandina, K. Tahara, N. Sändig, M.O. Blunt, J. Adisoejoso, S. Lei, F. Zerbertto, Y. Tobe, and S. De Feyter, ACS Nano 6, 8381 (2012).CrossRefGoogle Scholar
  5. 5.
    S. De Feyter and F.C. De Schryver, Chem. Soc. Rev. 32, 139 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Noda, L. Wan, and M. Osawa, Phys. Chem. Chem. Phys. 3, 3336 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Clair, A.P. Seitsonen, H. Brune, K. Kern, and J.V. Barth, J. Phys. Chem. B 108, 14585 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Lackinger and W.M. Heckl, Langmuir 25, 11307 (2009).CrossRefGoogle Scholar
  9. 9.
    F. De Marchi, D. Cui, J. Lipton-Duffin, C. Santato, J.M. MacLeod, and F. Rosei, J. Chem. Phys. 142, 101923 (2015).CrossRefGoogle Scholar
  10. 10.
    G.A. Sim, J.M. Robertson, and T.H. Goodwin, Acta Crystallogr. 8, 157 (1955).CrossRefGoogle Scholar
  11. 11.
    P. Waszczuk, P. Zelenay, and J. Sobkowski, Eletrochim. Acta 40, 1717 (1995).CrossRefGoogle Scholar
  12. 12.
    T.-H. Vu and T. Wandlowski, J. Electroanal. Chem. 776, 40 (2016).CrossRefGoogle Scholar
  13. 13.
    M.H. Hözle, Th. Wandlowski, and D.M. Kolb, J. Electroanal. Chem. 394, 271 (1995).CrossRefGoogle Scholar
  14. 14.
    D.M. Kolb, Prog. Surf. Sci. 51, 109 (1996).CrossRefGoogle Scholar
  15. 15.
    Y. Ikezawa, R. Sekiguchi, and T. Kitazume, Electrochim. Acta 46, 731 (2000).CrossRefGoogle Scholar
  16. 16.
    F. Montilla and E. Morallo, Langmuir 19, 10241 (2003).CrossRefGoogle Scholar
  17. 17.
    S. Chiang, Chem. Rev. 97, 1083 (1997).CrossRefGoogle Scholar
  18. 18.
    P. Sautet, Chem. Rev. 97, 1097 (1997).CrossRefGoogle Scholar
  19. 19.
    G. Su, H. Zhang, L. Wan, C. Bai, and T. Wandlowski, J. Phys. Chem. B 108, 1931 (2004).CrossRefGoogle Scholar
  20. 20.
    Z. Li, B. Han, and L.J. Wan, Langmuir 21, 6915 (2005).CrossRefGoogle Scholar
  21. 21.
    Z. Li and T. Wandlowski, J. Phys. Chem. C 113, 7821 (2009).CrossRefGoogle Scholar
  22. 22.
    N.T.M. Hai, M. Van Der Auweraer, K. Mu, and S. De Feyter, J. Phys. Chem. C 113, 11567 (2009).CrossRefGoogle Scholar
  23. 23.
    P. Dai, T. Chen, D. Wang, and L. Wan, J. Phys. Chem. C 116, 6208 (2012).CrossRefGoogle Scholar
  24. 24.
    B. Han, Z. Li, and T. Wandlowski, Anal. Bioanal. Chem. 388, 121 (2007).CrossRefGoogle Scholar
  25. 25.
    H. Li, S.G. Roscoe, and J. Lipkowski, J. Electroanal. Chem. 478, 67 (1999).CrossRefGoogle Scholar
  26. 26.
    C. Rabot, S. Clair, Y. Kim, and M. Kawai, Jpn. J. Appl. Phys. 46, 5572 (2007).CrossRefGoogle Scholar
  27. 27.
    Q. Chen, C.C. Perry, B.G. Frederick, P.W. Murray, S. Haq, and N.V. Richardson, Surf. Sci. 446, 63 (2000).CrossRefGoogle Scholar
  28. 28.
    G. Roelofsen, S.C. Group, and R. Utrecht, Acta Cryst. B32, 3328 (1972).Google Scholar
  29. 29.
    Th. Dretschkow, D. Lampner, and Th. Wandlowski, J. Electroanal. Chem. 458, 121 (1998).CrossRefGoogle Scholar
  30. 30.
    B.G. Federick, Q. Chen, F.M. Leibsle, M.B. Lee, K.J. Kitching, and N.V. Richardson, Surf. Sci. 394, 1 (1997).CrossRefGoogle Scholar
  31. 31.
    J. Gao, Y. Hu, S. Li, Y. Zhang, and X. Chen, Spectrochim. Acta A. 104, 41 (2013).CrossRefGoogle Scholar
  32. 32.
    P. Meakin, J.L. Cardy, E. Loh, and D.J. Scalapino, J. Chem. Phys. 86, 2380 (1987).CrossRefGoogle Scholar
  33. 33.
    J. Hotlos, O.M. Magnussen, and R.J. Behm, Surf. Sci. 335, 129 (1995).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations