Journal of Electronic Materials

, Volume 46, Issue 7, pp 4160–4165 | Cite as

Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

  • M. Z. H. Khan
  • S. M. F. Shahed
  • N. Yuta
  • T. Komeda
Article
  • 119 Downloads

Abstract

In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

Keywords

Graphene oxide nanosheets atomically flat substrates surface properties AFM SEM 

References

  1. 1.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).CrossRefGoogle Scholar
  3. 3.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  5. 5.
    N. Mohanty and V. Berry, Nano Lett. 8, 4469 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).CrossRefGoogle Scholar
  8. 8.
    H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).CrossRefGoogle Scholar
  9. 9.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  10. 10.
    X. Wang, L. Zhi, N. Tsao, Z. Tomović, J. Li, and K. Müllen, Angew. Chem. Int. Ed. Engl. 47, 2990 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Atalaya, A. Isacsson, and J.M. Kinaret, Nano Lett. 8, 4196 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Park, R.S. Ruoff, and M. Engineering, Nat. Nanotechnol. 4, 217 (2009).CrossRefGoogle Scholar
  13. 13.
    D.K. Pandey, T.F. Chung, G. Prakash, R. Piner, Y.P. Chen, and R. Reifenberger, Surf. Sci. 605, 1669 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Seo, M.K. Son, N. Itagaki, K. Koga, and M. Shiratani, J. Power Sources 307, 25 (2016).CrossRefGoogle Scholar
  15. 15.
    Z. Guo, S. Wang, G. Wang, Z. Niu, J. Yang, and W. Wu, Carbon N. Y. 76, 203 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Bonanni, A. Ambrosi, C.K. Chua, and M. Pumera, ACS Nano 8, 4197 (2014).CrossRefGoogle Scholar
  17. 17.
    J.-A. Yan, L. Xian, and M.Y. Chou, Phys. Rev. Lett. 103, 86802 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Nakamura, J. Ito, and A. Natori, J. Phys: Conf. Ser. 100, 52019 (2008).Google Scholar
  19. 19.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon N. Y. 45, 1558 (2007).CrossRefGoogle Scholar
  20. 20.
    C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).CrossRefGoogle Scholar
  21. 21.
    K. Morioku, N. Morimoto, Y. Takeuchi, and Y. Nishina, Sci. Rep. 6, 25824 (2016).CrossRefGoogle Scholar
  22. 22.
    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
  23. 23.
    A.F. Faria, D.S.T. Martinez, A.C.M. Moraes, M.E.H. Maia da Costa, E.B. Barros, A.G. Souza Filho, A.J. Paula, and O.L. Alves, Chem. Mater. 24, 4080 (2012).CrossRefGoogle Scholar
  24. 24.
    D. López-Díaz, M.M. Velázquez, S. Blanco de La Torre, A. Pérez-Pisonero, R. Trujillano, J.L. García Fierro, S. Claramunt, and A. Cirera, Chem. Phys. Chem 14, 4002 (2013).CrossRefGoogle Scholar
  25. 25.
    H.R. Thomas, S.P. Day, W.E. Woodruff, C. Vallés, R.J. Young, I.A. Kinloch, G.W. Morley, J.V. Hanna, N.R. Wilson, and J.P. Rourke, Chem. Mater. 25, 3580 (2013).Google Scholar
  26. 26.
    J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, Langmuir 25, 5957 (2009).CrossRefGoogle Scholar
  27. 27.
    H.C. Schniepp, K.N. Kudin, J.-L. Li, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, ACS Nano 2, 2577 (2008).CrossRefGoogle Scholar
  28. 28.
    L.X. Li, R.P. Liu, Z.W. Chen, Q. Wang, M.Z. Ma, Q. Jing, G. Li, and Y. Tian, Carbon N. Y. 44, 1544 (2006).CrossRefGoogle Scholar
  29. 29.
    L. Wang, Surf. Sci. 429, 178 (1999).CrossRefGoogle Scholar
  30. 30.
    A. Sinitskii, D.V. Kosynkin, A. Dimiev, and J.M. Tour, ACS Nano 4, 3095 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, and E.D. Williams, Nano Lett. 7, 1643 (2007).CrossRefGoogle Scholar
  32. 32.
    S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, and R.S. Ruoff, J. Mater. Chem. 16, 155 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen)Tohoku UniversitySendaiJapan
  2. 2.Department of Chemical EngineeringJessore University of Science and TechnologyJessoreBangladesh
  3. 3.Research Core for Interdisciplinary SciencesOkayama UniversityOkayamaJapan

Personalised recommendations