Journal of Electronic Materials

, Volume 46, Issue 7, pp 4344–4352 | Cite as

Impedance Spectroscopy Analysis of Mg4Nb2O9 Ceramics with Different Additions of V2O5 for Microwave and Radio Frequency Applications

  • J. M. S. Filho
  • C. A. Rodrigues Junior
  • D. G. Sousa
  • R. G. M. Oliveira
  • M. M. Costa
  • G. C. Barroso
  • A. S. B. Sombra


The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole–Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.


Complex impedance spectroscopy dielectric microwave materials Cole–Cole formalism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to CAPES, LOCEM Laboratory, x-ray Laboratory, and the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).


  1. 1.
    J.D. Guo, C.Y. Li, Q.J. Mei, G. Wang, H.T. Wu, and Q. Zou, Mater. Technol. 30, 3 (2015).CrossRefGoogle Scholar
  2. 2.
    M.H. Sarrafi, H.B. Bafrooei, M. Feizpour, T. Ebadzadeh, and M.H. Foroush, J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-013-1668-2.Google Scholar
  3. 3.
    R. Cao, C. Cao, X. Yu, and J. Qiu, Luminescence (2014). doi: 10.1002/bio.2711.Google Scholar
  4. 4.
    T.-H. Fang, Y.-J. Hsiao, L.-W. Ji, Y.-S. Chang, and S.-S. Chi, J. Cryst. Growth 310, 3331 (2008).CrossRefGoogle Scholar
  5. 5.
    G.G. Yao, C.J. Pei, H. Ma, H.L. Zhang, and X.L. Tian, J. Ceram Process. Res. 13, 93 (2012).Google Scholar
  6. 6.
    Y.-C. Liou and Y.-L. Sung, Ceram. Int. 34, 371 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Ananta, Mater. Lett. 58, 2530 (2004).CrossRefGoogle Scholar
  8. 8.
    H.T. Wu, Y.S. Jiang, W.B. Wu, F. Yang, and Y.L. Yue, J. Electroceram. (2012). doi: 10.1007/s10832-012-9705-8.
  9. 9.
    H.T. Wua, L.X. Lia, Q. Zoua, Q.W. Liaoa, P.F. Ninga, and P. Zhanga, J. Alloys Compd. 509, 2232 (2011).CrossRefGoogle Scholar
  10. 10.
    L. Bleicher, J.M. Sasaki, and C.O.P. Santos, J. Appl. Crystallogr. 33, 1189 (2000).CrossRefGoogle Scholar
  11. 11.
    S. Sahoo, U. Dash, S.K.S. Parashar, and S.M. Ali, J. Adv. Ceram. (2013). doi: 10.1007/s40145-013-0075-8.
  12. 12.
    N.K. Singh and P. Kumar, Adv. Mater. Lett. (2011). doi: 10.5185/amlett.2011.1215.
  13. 13.
    Z.S. Macedoa, A.L. Martinezb, and A.C. Hernandes, Mater. Res. Ibero. Am. J. (2003). doi: 10.1590/S1516-143920030 00400026.
  14. 14.
    S.S. Danewalia, G. Sharma, S. Thakur, and K. Singh, Sci. Rep. (2016). doi: 10.1038/srep24617.
  15. 15.
    M. Slankamenac, T. Ivetic, M.V. Nikolic, N. Ivetic, M. Zivanov, and V.B. Pavlovic, J. Electron. Mater. (2010). doi: 10.1007/S11664-010-1118-3.
  16. 16.
    D.H. Wang, W.C. Goh, M. Ning, and C.K. Ong, Appl. Phys. Lett. 88, 496 (2011).Google Scholar
  17. 17.
    P.S. Das, P.K. Chakraborty, B. Behera, N.K. Mohanty, and R.N.P. Choudhary, J. Adv. Ceram. (2014). doi: 10.1007/s40145-014-0087-zCN10-1154/TQ.
  18. 18.
    Y.-H. Lin, M. Li, C.-W. Nan, and J. Li, Appl. Phys. Lett. 89, 032907 (2006).CrossRefGoogle Scholar
  19. 19.
    J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford, 1892), p. 197.Google Scholar
  20. 20.
    K.W. Wagner, Ann. Phys. 40, 818 (1993).Google Scholar
  21. 21.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
  22. 22.
    S. Upadhyay, D. Kumar, and O.M. Prakash, Bull. Mater. Sci. 19, 513 (1996).CrossRefGoogle Scholar
  23. 23.
    P.A. Jahdhav, M.B. Shelar, and B.K. Chougule, J. Alloys Compd. 479, 385 (2009).CrossRefGoogle Scholar
  24. 24.
    B. Ghosh, A. Dutta, and T.P. Sinha, J. Alloys Compd. (2013). doi: 10.1016/j.jallcom.2012.11.027.
  25. 25.
    M.M. Costa, G.F.M. Pires Jr, A.J. Terezo, M.P.F. Graça, and A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Ram and S. Chakrabarti, J. Alloys Compd. (2008). doi: 10.1016/j.jallcom.2007.08.001.

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • J. M. S. Filho
    • 1
    • 2
  • C. A. Rodrigues Junior
    • 4
  • D. G. Sousa
    • 3
  • R. G. M. Oliveira
    • 1
  • M. M. Costa
    • 3
  • G. C. Barroso
    • 4
  • A. S. B. Sombra
    • 2
  1. 1.Department of Teleinformatics Engineering, Technology CenterFederal University of CearáFortalezaBrazil
  2. 2.Department of Physics, Laboratory of Telecommunications and Science and Materials Engineering (LOCEM)Federal University of CearáFortalezaBrazil
  3. 3.Institute of Physics, LACANM, UFMTCuiabáBrazil
  4. 4.Department of Electrical EngineeringFederal University of Ceará (UFC)Fortaleza, CearáBrazil

Personalised recommendations