Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3381–3389 | Cite as

Functional Iron Oxide–Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

  • Vu Thi Trang
  • Le Thi Tam
  • Nguyen  Van Quy
  • Tran Quang Huy
  • Nguyen Thanh Thuy
  • Doan Quang Tri
  • Nguyen Duy Cuong
  • Pham Anh Tuan
  • Hoang  Van Tuan
  • Anh-Tuan Le
  • Vu Ngoc Phan
Article

Abstract

Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains (Salmonella enteritidis and Klebsiella pneumoniae).

Keywords

Fe3O4-Ag hetero-nanocomposites antibacterial activity Salmonella enteritidis Klebsiella pneumoniae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Costi, A.E. Saunders, and U. Banin, Angew. Chem. Int. Ed. 49, 4878 (2010).CrossRefGoogle Scholar
  2. 2.
    K.C.-F. Leung and S. Xuan, Chem. Rec. 16, 458 (2016).CrossRefGoogle Scholar
  3. 3.
    N.C. Bigall, W.J. Parak, and D. Dorfs, Nano Today 7, 282 (2012).CrossRefGoogle Scholar
  4. 4.
    G. Li and Z. Tang, Nanoscale 6, 3995 (2014).CrossRefGoogle Scholar
  5. 5.
    H. Woo and K.H. Park, Catal. Today 278, 209 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, and D. Menon, ACS Appl. Mater. Interfaces 4, 251 (2011).CrossRefGoogle Scholar
  7. 7.
    C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, and S. Sun, Angew. Chem. Int. Ed. 47, 173 (2008).CrossRefGoogle Scholar
  8. 8.
    J. Chung, J. Kim, Y. Jang, S. Byun, T. Hyeon, and B.M. Kim, Tetrahedron Lett. 54, 5192 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Byun, Y. Song, and B.M. Kim, ACS Appl. Mater. Interfaces 8, 14637 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Zhu, C. Wang, D. Meng, and G. Diao, J. Mater. Chem. A 1, 2118 (2013).CrossRefGoogle Scholar
  11. 11.
    M.K. Rai, S.D. Deshmukh, A.P. Ingle, and A.K. Gade, J. Appl. Microbiol. 112, 841 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K.M. Fromm, Chem. Rev. 113, 4708 (2013).CrossRefGoogle Scholar
  13. 13.
    Q.H. Tran, V.Q. Nguyen, and A.-T. Le, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013).CrossRefGoogle Scholar
  14. 14.
    H.-J. Park, J.Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M.B. Gu, and J. Yoon, Water Res. 43, 1027 (2009).CrossRefGoogle Scholar
  15. 15.
    G.A. Sotiriou and S.E. Pratsinis, Environ. Sci. Technol. 44, 5649 (2010).CrossRefGoogle Scholar
  16. 16.
    C. Marambio-Jones and E.M.V. Hoek, J. Nanoparticle Res. 12, 1531 (2010).CrossRefGoogle Scholar
  17. 17.
    C. Levard, E.M. Hotze, G.V. Lowry, and G.E. Brown Jr, Environ. Sci. Technol. 46, 6900 (2012).CrossRefGoogle Scholar
  18. 18.
    Z. Wei, Z. Zhou, M. Yang, C. Lin, Z. Zhao, D. Huang, Z. Chen, and J. Gao, J. Mater. Chem. 21, 16344 (2011).CrossRefGoogle Scholar
  19. 19.
    L.M. Tung, N.X. Cong, L.T. Huy, N.T. Lan, V.N. Phan, N.Q. Hoa, L.K. Vinh, N.V. Thinh, L.T. Tai, and K. Mølhave, J. Nanosci. Nanotechnol. 16, 5902 (2016).CrossRefGoogle Scholar
  20. 20.
    J. Wang, X. Wu, C. Wang, N. Shao, P. Dong, R. Xiao, and S. Wang, ACS Appl. Mater. Interfaces 7, 20919 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Donnelly, W.E. Smith, K. Faulds, and D. Graham, Chem. Commun. 50, 12907 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Dallas, J. Tucek, D. Jancik, M. Kolar, A. Panacek, and R. Zboril, Adv. Funct. Mater. 20, 2347 (2010).CrossRefGoogle Scholar
  23. 23.
    R. Prucek, J. Tuček, M. Kilianová, A. Panáček, L. Kvítek, J. Filip, M. Kolář, K. Tománková, and R. Zbořil, Biomaterials 32, 4704 (2011).CrossRefGoogle Scholar
  24. 24.
    M.K. Paczosa and J. Mecsas, Microbiol. Mol. Biol. Rev. 80, 629 (2016).CrossRefGoogle Scholar
  25. 25.
    R. Putturu, T. Eevuri, B. Ch, and K. Nelapati, Int. J. Pharm. Biol. Sci. 5, 86 (2015).Google Scholar
  26. 26.
    W.M. Linam and M.A. Gerber, Pediatr. Infect. Dis. J. 26, 747 (2007).CrossRefGoogle Scholar
  27. 27.
    C.R. Lane, S. LeBaigue, O.B. Esan, A.A. Awofisyo, N.L. Adams, I.S. Fisher, K.A. Grant, T.M. Peters, L. Larkin, and R.H. Davies, Emerg. Infect. Dis. 20, 1097 (2014).CrossRefGoogle Scholar
  28. 28.
    T.H. Vo, N.H. Le, T.T.D. Cao, J.P. Nuorti, and N.N.T. Minh, Int. J. Infect. Dis. 26, 128 (2014).CrossRefGoogle Scholar
  29. 29.
    E.J. Threlfall, FEMS Microbiol. Rev. 26, 141 (2002).CrossRefGoogle Scholar
  30. 30.
    E. Landeras, M.A. González-Hevia, and M.C. Mendoza, Int. J. Food Microbiol. 43, 81 (1998).CrossRefGoogle Scholar
  31. 31.
    I. Graeber, M.A. Montenegro, C. Bunge, U. Boettcher, H. Tobias, E.A. Heinemeyer, and R. Helmuth, Eur. J. Epidemiol. 11, 325 (1995).CrossRefGoogle Scholar
  32. 32.
    Y.S. Kang, S. Risbud, J.F. Rabolt, and P. Stroeve, Chem. Mater. 8, 2209 (1996).CrossRefGoogle Scholar
  33. 33.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie: Perkin–Elmer, 1992).Google Scholar
  34. 34.
    Y. Mao, P. Yi, Z. Deng, and J. Ge, CrystEngComm 15, 3575 (2013).CrossRefGoogle Scholar
  35. 35.
    C.E. Hoppe, M. Lazzari, I. Pardiñas-Blanco, and M.A. López-Quintela, Langmuir 22, 7027 (2006).CrossRefGoogle Scholar
  36. 36.
    K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S.E. Skrabalak, Dalton Trans. 44, 17883 (2015).CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, J.-Y. Liu, S. Ma, Y.-J. Zhang, X. Zhao, X.-D. Zhang, and Z.-D. Zhang, J. Mater. Sci. Mater. Med. 21, 1205 (2010).CrossRefGoogle Scholar
  38. 38.
    A. Amarjargal, L.D. Tijing, I.-T. Im, and C.S. Kim, Chem. Eng. J. 226, 243 (2013).CrossRefGoogle Scholar
  39. 39.
    V.G. Pol, D.N. Srivastava, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, and A. Gedanken, Langmuir 18, 3352 (2002).CrossRefGoogle Scholar
  40. 40.
    I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Adv. Mater. 18, 1745 (2006).CrossRefGoogle Scholar
  41. 41.
    K. Zhao, C. Wu, Z. Deng, Y. Guo, and B. Peng, RSC Adv. 5, 52726 (2015).CrossRefGoogle Scholar
  42. 42.
    H. Gu, Z. Yang, J. Gao, C. Chang, and B. Xu, J. Am. Chem. Soc. 127, 34 (2005).CrossRefGoogle Scholar
  43. 43.
    J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, and Y. Liu, Nanoscale 3, 5034 (2011).CrossRefGoogle Scholar
  44. 44.
    J. Ma, K. Wang, and M. Zhan, ACS Appl. Mater. Interfaces 7, 16027 (2015).CrossRefGoogle Scholar
  45. 45.
    X. Liu, R. Jin, D. Chen, L. Chen, S. Xing, H. Xing, Y. Xing, and Z. Su, J. Mater. Chem. A 3, 4307 (2015).CrossRefGoogle Scholar
  46. 46.
    T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Vietnam Military Medical UniversityHanoiVietnam
  3. 3.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  4. 4.National Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
  5. 5.Vietnam Metrology InstituteHanoiVietnam
  6. 6.Ministry of Science and Technology of VietnamHanoiVietnam

Personalised recommendations