Journal of Electronic Materials

, Volume 46, Issue 4, pp 2467–2475 | Cite as

Effect of V2O5 Addition on the Phase Composition of Bi5FeTi3O15 Ceramic and RF/Microwave Dielectric Properties

  • F. A. A. Aguiar
  • A. J. M. Sales
  • B. S. Araújo
  • K. D. A. Sabóia
  • M. C. Campos  Filho
  • A. S. B. Sombra
  • A. P. Ayala
  • P. B. A. FechineEmail author


Bi5FeTi3O15 (BFT) polycrystalline ceramic with the addition of different concentrations of V2O5 was obtained by a solid-state method. X-ray powder diffraction, Raman spectroscopy and scanning electron microscopy (SEM) were used to study the microstructure and crystalline phases of the ceramics. SEM images showed plate-like morphology with dimensions between 0.32 μm and 3.07 μm (grain size, average around 1.3 μm). For samples with V2O5 concentration below 5%, Raman spectra were mainly determined by the vibrational modes from BFT. Impedance spectroscopy was also performed to evaluate the dielectric properties at microwave and radio frequencies (RF). Two extra phases (Bi4V1.5Fe0.5O10.5 and Bi2Ti2O7) were found due to the chemical reaction between BFT and V2O5. These phases were responsible for the changes in the grain morphology and dielectric response. V2O5 addition increased the real part of the dielectric permittivity (ε′) and reduced the dielectric loss tangent (tan δ) values at the RF range of 10 Hz to 1 MHz. For microwave frequencies of 3–3.5 GHz, ε′ and temperature coefficient of resonant frequency (τ f) values ranged from 66.52 ppm/°C to 88.60 ppm/°C and −304.3 ppm/°C to −192.6 ppm/°C, respectively. Thereby, BFT ceramics with added V2O5 are good candidates to be used for microwave devices (e.g., cell phones).


Ceramic matrix composites Raman spectroscopy impedance spectroscopy microstructure electroceramics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support of Brazilian agencies for scientific and technological development: conselho nacional de desenvolvimento científico e tecnológico (CNPq), coordenação de aperfeiçoamento de pessoal de nível superior (CAPES) and fundação cearense de apoio ao desenvolvimento científico e tecnológico (Funcap). In addition, the authors also acknowledge the Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos for providing the equipment and technical support for the experiments involving SEM and Laboratório de Difração de raios-x (UFC).


  1. 1.
    N.A. Hill and A. Filippetti, J. Magn. Magn. Mater. 245, 976 (2002).CrossRefGoogle Scholar
  2. 2.
    R. Ramesh and N.A. Spaldin, Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
  3. 3.
    J.A. Bartkowska and J. Dercz, J. Exp. Theor. Phys. 117, 875 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Rymarczyk, D. Machura, and J. Ilczuk, Eur. Phys. J. Spec. Top. 154, 187 (2008).CrossRefGoogle Scholar
  5. 5.
    L. Fuentes, M. García, J. Matutes-Aquino, and D. Ríos-Jara, J. Alloys Compd. 369, 10 (2004).CrossRefGoogle Scholar
  6. 6.
    S.K. Patri, R.N.P. Choudhary, and B.K. Samantaray, J. Electroceramics 20, 119 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Srinivas, S.V. Suryanarayana, G.S. Kumar, and M.M. Kumar, J. Phys. Condens. Matter 11, 3335 (1999).CrossRefGoogle Scholar
  8. 8.
    C.H. Hervoches and P. Lightfoot, Chem. Mater. 11, 3359 (1999).CrossRefGoogle Scholar
  9. 9.
    C.H. Hervoches, J.T.S. Irvine, and P. Lightfoot, Phys. Rev. B 64, 100102 (2001).CrossRefGoogle Scholar
  10. 10.
    C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, and P. Lightfoot, J. Solid State Chem. Fr. 164, 280 (2002).CrossRefGoogle Scholar
  11. 11.
    R.E. Newnham, R.W. Wolfe, and J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar
  12. 12.
    F. Kubel and H. Schmid, Ferroelectrics 129, 101 (1992).CrossRefGoogle Scholar
  13. 13.
    J.-B. Li, Y.P. Huang, G.H. Rao, G.Y. Liu, J. Luo, J.R. Chen, and J.K. Liang, Appl. Phys. Lett. 96, 222903 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Snedden, C. Hervoches, and P. Lightfoot, Phys. Rev. B 67, 3 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Mohapatra, P.R. Das, and R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 25, 1348 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Dalhyun, K. SangSu, S. TaeKwon, and C. ByungChun, J. Korean Phys. Soc. 55, 613 (2009).CrossRefGoogle Scholar
  17. 17.
    Z. Huang, G.-S. Wang, Y.-C. Li, R.-H. Liang, F. Cao, and X.-L. Dong, Phys. Status Solidi 208, 1047 (2011).CrossRefGoogle Scholar
  18. 18.
    F. Huang, X. Lu, T. Xu, Y. Liu, W. Su, Y. Jin, Y. Kan, and J. Zhu, Thin Solid Films 520, 6489 (2012).CrossRefGoogle Scholar
  19. 19.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, J. Appl. Crystallogr. 32, 36 (1999).CrossRefGoogle Scholar
  20. 20.
    G. Chen, W. Bai, L. Sun, J. Wu, Q. Ren, W. Xu, J. Yang, X. Meng, X. Tang, C.-G. Duan, and J. Chu, J. Appl. Phys. 113, 34901 (2013).CrossRefGoogle Scholar
  21. 21.
    C.-M. Lin, Y.-L. Kuo, and C.-H. Chou, Ceram. Int. 39, 1711 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Wu, Z. Tian, S. Yuan, and Z. Huang, Mater. Lett. 68, 190 (2012).CrossRefGoogle Scholar
  23. 23.
    O. Alvarez-Fregoso, J. Appl. Phys. 81, 1387 (1997).CrossRefGoogle Scholar
  24. 24.
    P.P. Jiang, X.L. Zhang, P. Chang, Z.G. Hu, W. Bai, Y.W. Li, and J.H. Chu, J. Appl. Phys. 115, 144101 (2014).CrossRefGoogle Scholar
  25. 25.
    C.G. Turner, P.M. Johns, E.M. Thatcher, D.B. Tanner, and J.C. Nino, J. Phys. Chem. C 49, 28797 (2014).CrossRefGoogle Scholar
  26. 26.
    S.J. Henderson, O. Shebanova, A.L. Hector, P.F. Mcmillan, and M.T. Weller, Chem. Mater. 19, 1712 (2007).CrossRefGoogle Scholar
  27. 27.
    Z. Jiang, Y. Liu, M. Li, T. Jing, B. Huang, X. Zhang, X. Qin, and Y. Dai, Sci. Rep. 6, 22727 (2016).CrossRefGoogle Scholar
  28. 28.
    E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (Wiley, Hoboken, 2005).Google Scholar
  29. 29.
    E.I. Speranskaya, I.S. Rez, L.V. Kozlova, V.M. Skorikov, and V.I. Slavov, Neorg. Mater. 1, 232 (1965).Google Scholar
  30. 30.
    J.R. Esquivel-Elizondo, B.B. Hinojosa, and J.C. Nino, Chem. Mater. 23, 4965 (2011).CrossRefGoogle Scholar
  31. 31.
    S. Shimada, K. Kodaira, and T. Matsushita, J. Cryst. Growth 41, 317 (1977).CrossRefGoogle Scholar
  32. 32.
    V.M. Zhukovskii, E.S. Buyanova, Y.V. Emel’yanova, M.V. Morozova, R.R. Shafigina, R.G. Zakharov, and V.D. Zhuravlev, Russ. J. Electrochem. 45, 512 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Bacewicz and P. Kurek, Solid State Ionics 127, 151 (2000).CrossRefGoogle Scholar
  34. 34.
    L. Li, X.M. Chen, and X.C. Fan, J. Eur. Ceram. Soc. 26, 3265 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Group of Chemistry of Advanced Materials (GQMAT)- Department of Analytical Chemistry and Physical-ChemistryFederal University of Ceará– UFCFortalezaBrazil
  2. 2.Telecommunications Laboratory and Materials Science and Engineering (LOCEM), Physics DepartmentFederal University of Ceará– UFCFortalezaBrazil
  3. 3.Physics DepartmentFederal University of Ceará– UFCFortalezaBrazil

Personalised recommendations