Journal of Electronic Materials

, Volume 46, Issue 6, pp 3714–3719 | Cite as

Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods

  • Hong Hanh Mai
  • Van Thanh Pham
  • Viet Tuyen Nguyen
  • Cong Doanh Sai
  • Chi Hieu Hoang
  • The Binh Nguyen


We have developed a non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. ZnO nanorods of high density, high crystallinity, and good alignment were grown on low-cost industrial copper substrates at low temperature. To grow them directly on the substrates without using a seed layer, we utilized a simple one-step seedless hydrothermal method, which is based on galvanic cell structure. Herein, the glucose-treated ZnO nanorods together with the ultraviolet (UV) irradiation of the sample during the photoluminescent measurement played the role of a catalyst. They decomposed glucose into hydrogen peroxide (H2O2) and gluconic acid, which is similar to the glucose oxidase enzyme (GOx) used in enzymatic sensors. Due to the formation of H2O2, the photoluminescence intensity of the UV emission peak of ZnO nanorods decreased as the glucose concentration increased from 1 mM to 100 mM. In comparison with glucose concentration of a normal human serum, which is in the range of 4.4–6.6 mM, the obtained results show potential of non-enzymatic fluorescent biosensors in medical applications.


Fluorescent biosensors non-enzymatic biosensors glucose sensing ZnO nanorods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Wua, X. Song, Y. Wua, X. Chen, F. Luo, and X. Chen, Talanta 105, 379 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, and Y. Zhang, Biosens. Bioelectron. 47, 86 (2013).CrossRefGoogle Scholar
  3. 3.
    R. Wilson and A.P.F. Turner, Biosens. Bioelectron. 7, 165 (1992).CrossRefGoogle Scholar
  4. 4.
    S. Park, H. Boo, and T.D. Chunga, Anal. Chim. Acta 556, 46 (2006).CrossRefGoogle Scholar
  5. 5.
    E. Topoglidis, A.E.G. Cass, B. O’regan, and J.R. Durrant, J. Electroanal. Chem. 517, 20 (2001).CrossRefGoogle Scholar
  6. 6.
    Y.H. Yang, H.F. Yang, M.H. Yang, Y.L. Liu, G.L. Shen, and R.Q. Yu, Anal. Chim. Acta 525, 213 (2004).CrossRefGoogle Scholar
  7. 7.
    J.Y. Chang, T.G. Kim, and Y.M. Sung, Nanotechnology 22, 425708 (2011).CrossRefGoogle Scholar
  8. 8.
    S.N. Sarangi, S. Nozaki, and S.N. Sahu, J. Biomed. Nanotechnol. 11, 988 (2015).CrossRefGoogle Scholar
  9. 9.
    S.S. Low, M.T.T. Tan, H.S. Loh, P.S. Khiew, and W.S. Chiue, Anal. Chim. Acta 903, 131 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Nozaki, S.N. Sarangi, S.N. Sahu, and K. Uchida, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 1 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Song, X. Wang, R. Elisa, and Z.L. Wang, J. Phys. Chem. B 109, 9869 (2005).CrossRefGoogle Scholar
  12. 12.
    Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, and J. Xu, et al., Appl. Phys. Lett. 86, 203115 (2005).CrossRefGoogle Scholar
  13. 13.
    K.F. Huo, Y.M. Hu, J.J. Fu, X.B. Wang, and K. Paul, J. Phys. Chem. C 111, 5875 (2007).CrossRefGoogle Scholar
  14. 14.
    Z. Zheng, Z.S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, Sci. Rep. 3, 2434 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Zhang, P.G. Yin, N. Wang, and L. Guo, Solid State Sci. 11, 865 (2009).CrossRefGoogle Scholar
  16. 16.
    J. Nayak, S.N. Sahu, J. Kasuya, and S. Nozaki, J. Phys. D Appl. Phys. 41, 115303 (2008).CrossRefGoogle Scholar
  17. 17.
    D. Sodzel, V. Khranovskyy, and V. Beni, Microchim. Acta 182, 1819 (2015).CrossRefGoogle Scholar
  18. 18.
    K. Kim, T.G. Kim, and Y. Sung, Cryst. Eng. Commun. 14, 2859 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Hong Hanh Mai
    • 1
  • Van Thanh Pham
    • 1
  • Viet Tuyen Nguyen
    • 1
  • Cong Doanh Sai
    • 1
  • Chi Hieu Hoang
    • 1
  • The Binh Nguyen
    • 1
  1. 1.Faculty of PhysicsVNU University of ScienceHanoiVietnam

Personalised recommendations