Journal of Electronic Materials

, Volume 46, Issue 6, pp 3406–3411 | Cite as

Ethanol-Sensing Characteristics of Nanostructured ZnO: Nanorods, Nanowires, and Porous Nanoparticles

  • Chu Thi Quy
  • Chu Manh Hung
  • Nguyen  Van Duy
  • Nguyen Duc Hoa
  • Mingzhi Jiao
  • Hugo Nguyen


The morphology and crystalline size of metal oxide-sensing materials are believed to have a strong influence on the performance of gas sensors. In this paper, we report a comparative study on the ethanol-sensing characteristics of ZnO nanorods, nanowires, and porous nanoparticles. The porous ZnO nanoparticles were prepared using a simple thermal decomposition of a sheet-like hydrozincite, whereas the nanorods and nanowires were grown by hydrothermal and chemical vapor deposition methods, respectively. The morphology and crystal structure of the synthesized materials were characterized by field-emission scanning electron microscopy and x-ray diffraction. Ethanol gas-sensing characteristics were systematically studied at different temperatures. Our findings show that for ethanol gas-sensing applications, ZnO porous nanoparticles exhibited the best sensitivity, followed by the nanowires and nanorods. Gas-sensing properties were also examined with respect to the role of crystal growth orientation, crystal size, and porosity.


ZnO porous nanoparticles nanorods nanowires gas sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Capuano, M. Santonico, G. Pennazza, S. Ghezzi, E. Martinelli, C. Roscioni, G. Lucantoni, G. Galluccio, R. Paolesse, C. Di Natale, and A. D’Amico, Sci. Rep. 5, 16491 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Akamatsu, T. Mori, K. Okamoto, H. Komatsu, K. Kumagai, S. Shiratori, M. Yamamura, T. Nabeshima, H. Sakai, M. Abe, J.P. Hill, K. Ariga, and A.C.S. Appl, Mater. Interfaces 7, 6189 (2015).CrossRefGoogle Scholar
  3. 3.
    X.-Y. Zou, F. Luo, R. Xie, L.-P. Zhang, X.-J. Ju, W. Wang, Z. Liu, and L.-Y. Chu, Anal. Methods 8, 4028 (2016).CrossRefGoogle Scholar
  4. 4.
    Z. Qin, Y. Liu, W. Chen, Y. Wu, and S. Li, Mater. Sci. Semicond. Process. 52, 75 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Akermi, N. Sakly, R. Ben Chaabane, and H. Ben Ouada, Mater. Sci. Semicond. Process. 16, 807 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Wei, L. Pan, and W. Huang, Mater. Sci. Eng. B 176, 1409 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Van Han, N.D. Hoa, P. Van Tong, H. Nguyen, and N. Van Hieu, Mater. Lett. 94, 41 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Liu, Z. Guo, F. Meng, Y. Jia, T. Luo, M. Li, and J. Liu, Cryst. Growth Des. 9, 1716 (2009).CrossRefGoogle Scholar
  9. 9.
    C. Lin, S.-J. Chang, W.-S. Chen, and T.-J. Hsueh, RSC Adv. 6, 11146 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Wang, Z. Tian, D. Han, F. Gu, and A.C.S. Appl, Mater. Interfaces 8, 5466 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Eriksson, V. Khranovskyy, F. Söderlind, P.-O. Käll, R. Yakimova, and A.L. Spetz, Sens. Actuators B Chem. 137, 94 (2009).CrossRefGoogle Scholar
  12. 12.
    H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, and F.R. Zhu, Sens. Actuators B Chem. 115, 247 (2006).CrossRefGoogle Scholar
  13. 13.
    T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, and J. Yi, Sens. Actuators B Chem. 152, 73 (2011).CrossRefGoogle Scholar
  14. 14.
    Z.Q. Zheng, J.D. Yao, B. Wang, and G.W. Yang, Sci. Rep. 5, 11070 (2015).CrossRefGoogle Scholar
  15. 15.
    A.S. Kazemi, R. Afzalzadeh, and M. Abadyan, J. Mater. Sci. Technol. 29, 393 (2013).CrossRefGoogle Scholar
  16. 16.
    K. Mirabbaszadeh and M. Mehrabian, Phys. Scr. 85, 35701 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Ahn, J.-H. Park, S.-B. Kim, S.H. Jee, Y.S. Yoon, and D.-J. Kim, Electrochem. Solid State Lett. 13, J125 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, and X. Xue, J. Mater. Chem. A 3, 3529 (2015).CrossRefGoogle Scholar
  19. 19.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004).CrossRefGoogle Scholar
  20. 20.
    T.J. Hsueh, C.L. Hsu, S.J. Chang, and I.C. Chen, Sens. Actuators B Chem. 126, 473 (2007).CrossRefGoogle Scholar
  21. 21.
    W. Wang, Y. Tian, X. Wang, H. He, Y. Xu, C. He, and X. Li, J. Mater. Sci. 48, 3232 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Tian, F. Yang, D. Zeng, and C. Xie, J. Phys. Chem. C 116, 10586 (2012).CrossRefGoogle Scholar
  23. 23.
    C.-L. Hsu, K.-C. Chen, T.-Y. Tsai, and T.-J. Hsueh, Sens. Actuators B Chem. 182, 190 (2013).CrossRefGoogle Scholar
  24. 24.
    C.-H. Kwak, H.-S. Woo, F. Abdel-Hady, A.A. Wazzan, and J.-H. Lee, Sens. Actuators B Chem. 223, 527 (2016).CrossRefGoogle Scholar
  25. 25.
    N.D. Hoa, N. Van Duy, S.A. El-Safty, and N. Van Hieu, J. Nanomater. 2015, 1 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Li, H. Fan, and X. Jia, J. Phys. Chem. C 114, 14684 (2010).CrossRefGoogle Scholar
  27. 27.
    Z. Jing and J. Zhan, Adv. Mater. 20, 4547 (2008).CrossRefGoogle Scholar
  28. 28.
    J. Huang, Y. Wu, C. Gu, M. Zhai, Y. Sun, and J. Liu, Sens. Actuators B Chem. 155, 126 (2011).CrossRefGoogle Scholar
  29. 29.
    P.-P. Wang, Q. Qi, R.-F. Xuan, J. Zhao, L.-J. Zhou, and G.-D. Li, RSC Adv. 3, 19853 (2013).CrossRefGoogle Scholar
  30. 30.
    M. Jiao, N.V. Chien, N. Van Duy, N.D. Hoa, N. Van Hieu, K. Hjort, and H. Nguyen, Mater. Lett. 169, 231 (2016).CrossRefGoogle Scholar
  31. 31.
    N.D. Khoang, H.S. Hong, D.D. Trung, N. Van Duy, N.D. Hoa, D.D. Thinh, and N. Van Hieu, Sens. Actuators B Chem. 181, 529 (2013).CrossRefGoogle Scholar
  32. 32.
    H. Nguyen, C.T. Quy, N.D. Hoa, N.T. Lam, N. Van Duy, V. Van Quang, and N. Van Hieu, Sens. Actuators B Chem. 193, 888 (2014).CrossRefGoogle Scholar
  33. 33.
    N.T. Phuong Nhung, P. Van Tong, C.M. Hung, N. Van Duy, N.V. Chien, N. Van Vinh, N.T. Tuyen, and N.D. Hoa, RSC Adv. 6, 64215 (2016).CrossRefGoogle Scholar
  34. 34.
    P. Van Tong, N.D. Hoa, N. Van Duy, and N. Van Hieu, RSC Adv. 5, 25204 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Cheng and K.M. Poduska, ECS J. Solid State Sci. Technol. 3, P133 (2014).CrossRefGoogle Scholar
  36. 36.
    W.-H. Chiu, C.-H. Lee, H.-M. Cheng, H.-F. Lin, S.-C. Liao, J.-M. Wu, and W.-F. Hsieh, Energy Environ. Sci. 2, 694 (2009).CrossRefGoogle Scholar
  37. 37.
    C.M. Hung, N.D. Hoa, N. Van Duy, N. Van Toan, D.T.T. Le, and N. Van Hieu, J. Sci. Adv. Mater. Devices 1, 45 (2016).CrossRefGoogle Scholar
  38. 38.
    J. Deng, Q. Fu, W. Luo, X. Tong, J. Xiong, Y. Hu, and Z. Zheng, Sens. Actuators B Chem. 224, 153 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Chu Thi Quy
    • 1
  • Chu Manh Hung
    • 1
  • Nguyen  Van Duy
    • 1
  • Nguyen Duc Hoa
    • 1
  • Mingzhi Jiao
    • 2
  • Hugo Nguyen
    • 2
  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and TechnologyHanoiViet Nam
  2. 2.Department of Engineering Sciences, Division of Microsystem TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations