Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3572–3584 | Cite as

Unique Electronic States in Non-centrosymmetric Cubic Compounds

  • Masashi Kakihana
  • Kengo Nishimura
  • Yousuke Ashitomi
  • Tomoyuki Yara
  • Dai Aoki
  • Ai Nakamura
  • Fuminori Honda
  • Miho Nakashima
  • Yasushi Amako
  • Yoshiya Uwatoko
  • Toshiro Sakakibara
  • Shota Nakamura
  • Tetsuya Takeuchi
  • Yoshinori Haga
  • Etsuji Yamamoto
  • Hisatomo Harima
  • Masato Hedo
  • Takao NakamaEmail author
  • Yoshichika Ōnuki
Article

Abstract

We succeeded in growing single crystals of \(\hbox {Yb}_{4}\hbox {Sb}_{3}\), Ullmannite(NiSbS)-type compounds, \(\hbox {Pd}_{3}\hbox {Bi}_{2}\hbox {Si}_{2}\), EuPtSi, and EuPtGe with the non-centrosymmetric cubic structures by the Bridgman method. Split Fermi surface properties are clarified for \(\hbox {Yb}_{4}\hbox {Sb}_{3}\) and \(\hbox {Pd}_{3}\hbox {Bi}_{2}\hbox {Si}_{2}\). As for EuPtSi and EuPtGe with the cubic chiral structure, we observed the first-order like antiferromagnetic ordering at the Néel temperatures \(T_N=4.0\,{\rm K}\) and 3.4 K, respectively, which are small in magnitude compared with ordering temperatures of 10–100 K in the usual divalent Eu compounds, reflecting the frustration of spins in the chiral structure.

Keywords

Non-centrosymmetric cubic structures split Fermi surface properties spin frustration \(\hbox {Yb}_{4}\hbox {Sb}_{3}\) NiSbS \(\hbox {Pd}_{3}\hbox {Bi}_{2}\hbox {S}_{2}\) EuPtSi EuPtGe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bauer and M. Sigrist, Non-Centrosymmetric Superconductors, Lecture Notes in Physics, vol. 847 (Springer, Berlin Heidelberg, 2012).Google Scholar
  2. 2.
    J.H. Dil, J. Phys.: Condens. Matter 21(40), 403001 (2009).Google Scholar
  3. 3.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Settai, K. Katayama, D. Aoki, I. Sheikin, G. Knebel, J. Flouquet, and Y. Ōnuki, J. Phys. Soc. Jpn. 80, 094703 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Kakihana, A. Teruya, K. Nishimura, A. Nakamura, T. Takeuchi, Y. Haga, H. Harima, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn. 84(9), 094711 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Kakihana, A. Nakamura, A. Teruya, H. Harima, Y. Haga, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn. 84(3), 033701 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. Ōnuki, A. Nakamura, T. Uejo, A. Teruya, M. Hedo, T. Nakama, F. Honda, and H. Harima, J. Phys. Soc. Jpn. 83(6), 061018 (2014).CrossRefGoogle Scholar
  8. 8.
    G.M. Sheldrick, Acta Crystallogr. Sect. A 64(1), 112 (2008).CrossRefGoogle Scholar
  9. 9.
    H. Aoki, A. Ochiai, T. Suzuki, R. Helfrich, and F. Steglich, Phys. B 230, 698 (1997).CrossRefGoogle Scholar
  10. 10.
    M. Shirakawa, M. Ona, H. Aoki, A. Ochiai, and H. Harima, Acta Phys. Pol. B 34, 1157 (2003).Google Scholar
  11. 11.
    D. Aoki, P. Winiewski, K. Miyake, N. Watanabe, Y. Inada, R. Settai, E. Yamamoto, Y. Haga, and Y. Onuki, Philos. Mag. B 80(8), 1517 (2000).CrossRefGoogle Scholar
  12. 12.
    A.J. Foecker and W. Jeitschko, J. Solid State Chem. 162(1), 69 (2001).CrossRefGoogle Scholar
  13. 13.
    T. Takabatake, M. Ishikawa, and A. Junod, J. Phys. Soc. Jpn. 57(8), 2763 (1988).CrossRefGoogle Scholar
  14. 14.
    D. Koelling and B. Harmon, J. Phys. C: Solid State Phys. 10(16), 3107 (1977).CrossRefGoogle Scholar
  15. 15.
    R. Weihrich, S.F. Matar, V. Eyert, F. Rau, M. Zabel, M. Andratschke, I. Anusca, and T. Bernert, Prog. Solid State Chem. 35(2), 309 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Hopkinson and H. Kee, Phys. Rev. B 74, 224441 (2006).CrossRefGoogle Scholar
  17. 17.
    S. Isakov, J. Hopkinson, and H. Kee, Phys. Rev. B 78, 014404 (2008).CrossRefGoogle Scholar
  18. 18.
    T. Redpath and J. Hopkinson, Phys. Rev. B 82, 014410 (2010).CrossRefGoogle Scholar
  19. 19.
    D. Adroja, B. Padalia, S. Malik, R. Nagarajan, and R. Vijayaraghavan, J. Magn. Magn. Mater. 89(3), 375 (1990).CrossRefGoogle Scholar
  20. 20.
    R. Pöttgen, R.K. Kramer, W. Schnelle, R. Müllmann, and B.D. Mosel, J. Mater. Chem. 6(4), 635 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Masashi Kakihana
    • 2
  • Kengo Nishimura
    • 2
  • Yousuke Ashitomi
    • 2
  • Tomoyuki Yara
    • 2
  • Dai Aoki
    • 3
  • Ai Nakamura
    • 3
  • Fuminori Honda
    • 3
  • Miho Nakashima
    • 4
  • Yasushi Amako
    • 4
  • Yoshiya Uwatoko
    • 5
  • Toshiro Sakakibara
    • 5
  • Shota Nakamura
    • 5
  • Tetsuya Takeuchi
    • 6
  • Yoshinori Haga
    • 7
  • Etsuji Yamamoto
    • 7
  • Hisatomo Harima
    • 8
  • Masato Hedo
    • 1
  • Takao Nakama
    • 1
    Email author
  • Yoshichika Ōnuki
    • 1
  1. 1.Faculty of Science, University of the Ryukyus, NishiharaOkinawaJapan
  2. 2.Graduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
  3. 3.Institute for Materials ResearchTohoku UniversityOaraiJapan
  4. 4.Department of Physics, Faculty of ScienceShinshu UniversityMatsumoto, NaganoJapan
  5. 5.Institute for Solid State PhysicsThe University of TokyoKashiwa, ChibaJapan
  6. 6.Low Temperature CenterOsaka UniversityToyonaka, OsakaJapan
  7. 7.Advance Science Research Center, Japan Atomic Energy AgencyTokaiJapan
  8. 8.Graduate School of ScienceKobe UniversityKobeJapan

Personalised recommendations