Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3639–3645 | Cite as

Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

  • Son Vuong
  • Ha-My Nguyen-Dang
  • Quang Thinh Tran
  • Thi Thu Thuy Luong
  • Trang T. T. Pham
  • Thuat Nguyen-Tran
  • Anh Tuan Mai
Article

Abstract

This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6′-dimethyl-4,4′-bis(phenylethynyl)-2,2′-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I/I3 electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

Keywords

Copper(I) bipyridyl dye sensitized solar cells poly(vinylpyrrolidone) TiO2 paste 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors greatly acknowledge the financial support of the National Foundation for Science and Technology Development-NAFOSTED under Project No. 103.02-2014.81 “Synthesis of organic-inorganic perovskite materials for application of absorber layers in hybrid heterojunction solar cells”. The authors would like to thank for use of research equipment from the project named “Strengthening research and training capacity in fields of Nanoscience and Technology, and Application in Medical, Pharmaceutical, Food, Biology, Environmental protection and Climate Change adaptation in the direction of sustainable development” of the Vietnam National University Hanoi.

References

  1. 1.
    D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Appl. Phys. 25, 676 (1954).CrossRefGoogle Scholar
  2. 2.
    M.A. Green, Energy Policy 28, 989 (2000).CrossRefGoogle Scholar
  3. 3.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  4. 4.
    M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Grätzel, Inorg. Chem. 44, 6841 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Grätzel, Acc. Chem. Res. 42, 1788 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Shalini, R. Balasundaraprabhu, T.S. Kumar, N. Prabavathy, S. Senthilarasu, and S. Prasanna, Int. J. Energy Res. 40, 1303 (2016).CrossRefGoogle Scholar
  8. 8.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt. Res. Appl. 24, 905 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Gratzel, Science 334, 629 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).CrossRefGoogle Scholar
  11. 11.
    N. Alonso-Vante, J.-F. Nierengarten, and J.-P. Sauvage, J. Chem. Soc. Dalt. Trans. 11, 1649 (1994).CrossRefGoogle Scholar
  12. 12.
    T. Bessho, E.C. Constable, M. Graetzel, A. Hernandez Redondo, C.E. Housecroft, W. Kylberg, M.K. Nazeeruddin, M. Neuburger, and S. Schaffner, Chem. Commun. 2008, 3717 (2008).CrossRefGoogle Scholar
  13. 13.
    K.A. Wills, H.J. Mandujano-Ramírez, G. Merino, D. Mattia, T. Hewat, N. Robertson, G. Oskam, M.D. Jones, S.E. Lewis, and P.J. Cameron, RSC Adv. 3, 23361 (2013).CrossRefGoogle Scholar
  14. 14.
    B. Bozic-Weber, S.Y. Brauchli, E.C. Constable, S.O. Fürer, C.E. Housecroft, and I.A. Wright, Phys. Chem. Chem. Phys. 15, 4500 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Sandroni, L. Favereau, A. Planchat, H. Akdas-Kilig, N. Szuwarski, Y. Pellegrin, E. Blart, H. Le Bozec, M. Boujtita, and F. Odobel, J. Mater. Chem. A 2, 9944 (2014).CrossRefGoogle Scholar
  16. 16.
    C.E. Housecroft and E.C. Constable, Chem. Soc. Rev. 44, 8386 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Bozic-Weber, E.C. Constable, C.E. Housecroft, P. Kopecky, M. Neuburger, and J.A. Zampese, Dalt. Trans. 40, 12 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Vuong, N.H. Nguyen, T.T.T. Luong, Q.T. Tran, and A.T. Mai, Commun. Phys. 26, 165 (2016).Google Scholar
  19. 19.
    D. Wenkert and R.B. Woodward, J. Org. Chem. 48, 283 (1983).CrossRefGoogle Scholar
  20. 20.
    K. Sonogashira, J. Organomet. Chem. 653, 46 (2002).CrossRefGoogle Scholar
  21. 21.
    S.N. Karthick, K.V. Hemalatha, C. Justin Raj, A. Subramania, and H.-J. Kim, Thin Solid Films 520, 7018 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Fan, C. Li, G. Yang, and L. Zhang, Rare Met. 25, 163 (2006).CrossRefGoogle Scholar
  23. 23.
    N.F. Mott and E.A. Davis, Electronic Processing in Non-Crystalline Materials, 2nd ed. (Oxford: Oxford University Press, 1997), p. 273.Google Scholar
  24. 24.
    N. Ghobadi, Int. Nano Lett. 3, 2 (2013).CrossRefGoogle Scholar
  25. 25.
    E. Condon, Phys. Rev. 28, 1182 (1926).CrossRefGoogle Scholar
  26. 26.
    J. Franck and E.G. Dymond, Trans. Faraday Soc. 21, 536 (1926).CrossRefGoogle Scholar
  27. 27.
    D.C. Todd, G.R. Fleming, and J.M. Jean, J. Chem. Phys. 97, 8915 (1992).CrossRefGoogle Scholar
  28. 28.
    F. Brovelli, B.L. Rivas, J.C. Bernède, M.A. Del Valle, F.R. Díaz, and Y. Berredjem, Polym. Bull. 58, 521 (2007).CrossRefGoogle Scholar
  29. 29.
    R. Balamurugan, M. Palaniandavar, and R.S. Gopalan, Inorg. Chem. 40, 2246 (2001).CrossRefGoogle Scholar
  30. 30.
    A. Sedghi and H.N. Miankushki, Int. J. Electrochem. Sci. 7, 12078 (2012).Google Scholar
  31. 31.
    R. Mori, T. Ueta, K. Sakai, Y. Niida, Y. Koshiba, L. Lei, K. Nakamae, and Y. Ueda, J. Mater. Sci. 46, 1341 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Son Vuong
    • 1
  • Ha-My Nguyen-Dang
    • 2
    • 3
  • Quang Thinh Tran
    • 1
  • Thi Thu Thuy Luong
    • 4
  • Trang T. T. Pham
    • 2
    • 5
  • Thuat Nguyen-Tran
    • 2
  • Anh Tuan Mai
    • 1
  1. 1.International Training Institute for Materials ScienceHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Nano and Energy CenterVNU University of ScienceHanoiVietnam
  3. 3.Department of Advanced Materials Science and NanotechnologyUniversity of Science and Technology of HanoiHanoiVietnam
  4. 4.Faculty of ChemistryHanoi National University of EducationHanoiVietnam
  5. 5.Faculty of Engineering Physics and NanotechnologyVNU University of Engineering and TechnologyHanoiVietnam

Personalised recommendations