Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3507–3511 | Cite as

Carbon Nanotube Field-Effect Transistor for DNA Sensing

  • Chu T. Xuan
  • Nguyen T. Thuy
  • Tran T. Luyen
  • Tran T. T. Huyen
  • Mai A. Tuan
Article

Abstract

A field-effect transistor (FET) using carbon nanotubes (CNTs) as the conducting channel (CNTFET) has been developed, designed such that the CNT conducting channel (15 μm long, 700 μm wide) is directly exposed to medium containing target deoxyribonucleic acid (DNA). The CNTFET operates at high ON-current of 1.91 μA, ON/OFF-current ratio of 1.2 × 105, conductance of 4.3 μS, and leakage current of 16.4 pA. We present initial trials showing the response of the CNTFET to injection of target DNA into aqueous medium.

Keywords

Field-effect transistor CNTFET DNA sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) under Project Code No. 103.99-2013.58.

References

  1. 1.
    P. Bergveld, IEEE Trans. Biomed. Eng. 17, 70 (1970).CrossRefGoogle Scholar
  2. 2.
    P. Bergveld, Sens. Actuators B Chem. 88, 1 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Sens. Actuators B Chem. 57, 56 (1999).CrossRefGoogle Scholar
  4. 4.
    L.M. Shepherd, S. Member, and C. Toumazou, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 52, 2614 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Iijima and I. Toshinari, Nature 363, 03 (1993).CrossRefGoogle Scholar
  6. 6.
    V.N. Popov, Mater. Sci. Eng., R 43, 61 (2004).CrossRefGoogle Scholar
  7. 7.
    S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeong, and S.H. Hong, Carbon 46, 482 (2008).CrossRefGoogle Scholar
  8. 8.
    S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).CrossRefGoogle Scholar
  9. 9.
    P. Avouris, Acc. Chem. Res. 35, 1026 (2002).CrossRefGoogle Scholar
  10. 10.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
  11. 11.
    S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, Appl. Phys. Lett. 80, 3817 (2002).CrossRefGoogle Scholar
  12. 12.
    F. Yuan, Y. Deng, W. Zhou, M. Zhang, and Z. Li, Nano Res. 9, 1701 (2016).CrossRefGoogle Scholar
  13. 13.
    Y. Han, D. Mayer, A. Offenha, and S. Ingebrandt, Thin Solid Films 510, 175 (2006).CrossRefGoogle Scholar
  14. 14.
    T.T. Nguyen, S.U. Nguyen, and D.T. Phuong, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 1 (2011).Google Scholar
  15. 15.
    A. Javey, Q. Wang, W. Kim, and H. Dai, IEEE International Electron Devices Meeting (2004), pp. 1–4.Google Scholar
  16. 16.
    S.H. Jin, A.E. Islam, T. Kim, J. Kim, M.A. Alam, and J.A. Rogers, Adv. Funct. Mater. 22, 2276 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Simon and N. Kwok, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley-Interscience, 2007).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Chu T. Xuan
    • 1
  • Nguyen T. Thuy
    • 1
    • 2
  • Tran T. Luyen
    • 1
  • Tran T. T. Huyen
    • 1
  • Mai A. Tuan
    • 1
  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Electric Power University (EPU)HanoiVietnam

Personalised recommendations