Journal of Electronic Materials

, Volume 46, Issue 6, pp 3323–3332 | Cite as

Two-Step Hydrothermal Synthesis of Bifunctional Hematite–Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

  • Vu Thi Trang
  • Le Thi TamEmail author
  • Vu Ngoc Phan
  • Nguyen Van Quy
  • Tran Quang Huy
  • Anh-Tuan LeEmail author


In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.


Fe2O3-Ag magnetic nanocomposites antibacterial anticancer hydrothermal synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 106-YS.99-2014.19. The authors would like to acknowledge the technical supports for antibacterial measurements at National Institute of Hygiene and Epidemiology (NIHE) and for cytotoxicity analyses at National Institute of Medicinal Materials (NIMM) in Hanoi, Vietnam.


  1. 1.
    N. Sanvicens and M.P. Marco, Trends. Biotechnology 26, 425 (2008).Google Scholar
  2. 2.
    K. Park, S. Lee, E. Kang, K. Kim, K. Choi, and I.C. Kwon, Adv. Func. Mater. 19, 1553 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv. 27, 76 (2009).CrossRefGoogle Scholar
  4. 4.
    A.T. Le, P.T. Huy, L.T. Tam, P.D. Tam, N.V. Hieu, and T.Q. Huy, Int. J. Nanotechnol. 8, 278 (2011).CrossRefGoogle Scholar
  5. 5.
    A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N.V. Hieu, A.A. Kudrinskiy, and Y.A. Krutyakov, Mater. Sci. Eng. C 30, 910 (2010).CrossRefGoogle Scholar
  6. 6.
    A.T. Le, P.T. Huy, P.D. Tam, T.Q. Huy, P.D. Cam, A.A. Kudrinskiy, and Y.A. Krutyakov, Curr. Appl. Phys. 10, 910–916 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Chernousova and M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Yu, Y. Yin, and J. Liu, Environ. Sci. Process. Impacts 15, 78 (2013).CrossRefGoogle Scholar
  9. 9.
    T.Q. Huy, N.V. Quy, and A.T. Le, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013).CrossRefGoogle Scholar
  10. 10.
    R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari, and V. Ravikumar, Colloids Surf. B 108, 80 (2013).CrossRefGoogle Scholar
  11. 11.
    K. Vasanth, K. Ilango, R. MohanKumar, A. Agrawal, and G.P. Dubey, Colloids Surf. B 117, 354 (2014).CrossRefGoogle Scholar
  12. 12.
    J.S. Devi, V. Bhimba, and K. Ratnam, Int. J. Pharm. Pharm. Sci. 4, 710 (2012).Google Scholar
  13. 13.
    R. Prucek, J. Tucek, M. Kilianova, A. Panacek, L. Kvitek, J. Filip, M. Kolar, K. Tomankova, and R. Zboril, Biomaterials 32, 4704 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Chen, N. Gao, and J. Jiang, Small 9, 3242 (2013).Google Scholar
  15. 15.
    S.B. Wang, Y.L. Min, and S.H. Yu, J. Mater. Chem. C 111, 3551 (2007).Google Scholar
  16. 16.
    W. Qin, C. Yang, R. Yi, and G. Gao, J. Nanomater. (2011). doi: 10.1155/2011/159259.
  17. 17.
    L. Chen, H.K. Seo, Z. Mao, Y.M. Jung, and B. Zhao, Anal. Methods 3, 1622 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Sun, G. Guo, B. Yang, X. Zhou, Y. Liu, and G. Zhao, J. Non-Cryst. Sol. 357, 1085 (2011).CrossRefGoogle Scholar
  19. 19.
    Q. Li, M. Tian, L. Hiu, H. Zou, L. Zhang, and W.C. Wang, Electron. Act. 91, 114 (2013).CrossRefGoogle Scholar
  20. 20.
    G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz, and J. Economy, Mater. Lett. 65, 1191 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Geng, D. Ge, S. Lu, J. Wang, Z. Ye, Y. Yang, J. Zheng, and H. Gu, Chem. Eur. J. 21, 11129 (2015).CrossRefGoogle Scholar
  22. 22.
    L.T. Tam, N.X. Dinh, N.V. Cuong, N.V. Quy, T.Q. Huy, D.T. Ngo, K. Mohave, and A.T. Le, J. Electron. Mater. 45, 5321 (2016).CrossRefGoogle Scholar
  23. 23.
    F. Denizot and R. Lang, J. Immunol. Methods 89, 271 (1986).CrossRefGoogle Scholar
  24. 24.
    A.R. Baltazar, S.Y. Reyes-Lopez, R. Esparza, M. Estevez, A.H. Martinez, G. Rosas, and R. Perez, Adv. Cond. Matt. Phys. (2015). doi: 10.1155/2015/320873.
  25. 25.
    L.T. Huy, L.T. Tam, V.N. Phan, T. Trung, L.M. Tung, D.T.N. Thanh, N.Q. Hoa, L.K. Vinh, D.T. Ngo, K. Mohave, and A.T. Le, J. Nanosci. Nanotechnol. 16, 7919 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Military Medical UniversityHanoiVietnam
  3. 3.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and TechnologyHanoiVietnam
  4. 4.National Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam

Personalised recommendations