Advertisement

Journal of Electronic Materials

, Volume 46, Issue 5, pp 3137–3144 | Cite as

Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery

  • Tongjun Liu
  • Tongcai Wang
  • Weiling LuanEmail author
  • Qimin Cao
Article

Abstract

Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.

Keywords

Heat pipe thermoelectric generator waste heat recovery TE couples 

List of symbols

AHP

Cross-sectional area of the heat pipe

C1

TE couples arranged in C 1 columns

C2

TE couples arranged in C 2 rows

D

Distance between the fins

hc

Heat transfer coefficient of the cooling structure

Imax

Current at maximum power output

K

Thermal conductivity of hot air

KHP

Thermal conductivity of the heat pipe

LW

Working length of the heat pipe

L

Width of the heat pipe

n

Number of TE couples

PTE

Maximal power output of one TE couple

Pr

Prandtl number of the hot air

Pmax

Maximum power output in series

RTE

Thermal resistance of one TE couple

Rex

Thermal resistance of the finned evaporator section

Rfin

Thermal resistance of the fin structure by convection heat transfer

Rm

Measured internal resistance

Rl

External load resistance

Rct1Rct2

Thermal contact resistance

Rteg

Thermal resistance of one TE couple

Rplate

Thermal resistance of the heat pipe plate by convection heat transfer

RHP

Thermal resistance of the heat pipe

Rc

Thermal resistance of the cold side

t

Thickness of the fins

ΔT

Temperature difference between the two ceramic plates of a TE module

Th

Hot air inlet temperature

Tc

Ambient temperature or the cooling water temperature

U

Open-circuit voltage in series

Umax

Voltage at maximum power output

UTE

Open circuit voltage of one TE couple

w1

The dimension of one TE couple width

w2

The dimension of one TE couple height

αm

Measured Seebeck coefficient

ρ

Density of the hot air

υ

Kinematic viscosity of the air

μ

Viscosity of the hot air

Abbreviations

HP

Heat pipe

HP-TEG

Heat pipe assisted thermoelectric generator

MPP

Maximum power point

TE

Thermoelectric

TEG

Thermoelectric generator

VCHP

Variable conductance heat pipe

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Nature Science Foundation of China (51172072, 51475166) and National Basic Research Program of China (2013CB03550).

References

  1. 1.
    M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, and M. Mohamad, Renew. Sust. Energy Rev. 30, 337 (2014).CrossRefGoogle Scholar
  2. 2.
    S.B. Riffat and X. Ma, Therm. Eng. 23, 913 (2003).CrossRefGoogle Scholar
  3. 3.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  4. 4.
    W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).CrossRefGoogle Scholar
  5. 5.
    F.J. Lesage, É.V. Sempels, and N. Lalande-Bertrand, Energy Convers. Manag. 75, 532 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Wang, W. Luan, W. Wang, and S.-T. Tu, Appl. Energy 136, 860 (2014).CrossRefGoogle Scholar
  7. 7.
    J.-Y. Jang, Y.-C. Tsai, and C.-W. Wu, Energy 53, 270 (2013).CrossRefGoogle Scholar
  8. 8.
    M.F. Remeli, L. Tan, A. Date, B. Singh, and A. Akbarzadeh, Energy Convers. Manag. 91, 110 (2015).CrossRefGoogle Scholar
  9. 9.
    M.F. Remeli, A. Date, B. Orr, L.C. Ding, B. Singh, N.D.N. Affandi, and A. Akbarzadeh, Energy Convers. Manag. 111, 147 (2016).CrossRefGoogle Scholar
  10. 10.
    F.P. Brito, A. Alves, J.M. Pires, L.B. Martins, J. Martins, J. Oliveira, J. Teixeira, L.M. Goncalves, and M.J. Hall, J. Electron. Mater. 45, 1846 (2016).CrossRefGoogle Scholar
  11. 11.
    J.-C. Jang, R.-G. Chi, S.-H. Rhi, K.-B. Lee, H.-C. Hwang, J.-S. Lee, and W.-H. Lee, J. Electron. Mater. 44, 2039 (2015).CrossRefGoogle Scholar
  12. 12.
    P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, Appl. Energy 152, 121 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, EPL 97, 1 (2012).CrossRefGoogle Scholar
  14. 14.
    C.-C. Weng and M.-J. Huang, Int. J. Therm. Sci. 71, 302 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Mereu, E. Sciubba, and A. Bejan, Int. J. Heat Mass Transf. 36, 3677 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Tongjun Liu
    • 1
  • Tongcai Wang
    • 1
  • Weiling Luan
    • 1
    Email author
  • Qimin Cao
    • 1
  1. 1.Key Laboratory of Pressure System and Safety (MOE), School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations