Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3458–3462 | Cite as

Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

  • Trinh Tuan Anh
  • Vu Manh Thuan
  • Doan Ha Thang
  • Bui Thi Hang
Article
  • 67 Downloads

Abstract

In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

Keywords

Fe2O3 Nanoparticles carbon additive Fe2O3/AB composite electrode Fe/air battery anode binder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is funded by the Hanoi University of Science and Technology (HUST) under Project Number T2016-LN-19.

References

  1. 1.
    L. Ojefors, Electrochem. Sci. Technol. 123, 1691 (1977).CrossRefGoogle Scholar
  2. 2.
    R.S. Schrebler Guzmán, J.R. Vilche, and A.J. Arvía, Electrochim. Acta 24, 395 (1979).CrossRefGoogle Scholar
  3. 3.
    N. Jayalakshmi and V.S. Muralidharan, J. Power Sources 32, 277 (1990).CrossRefGoogle Scholar
  4. 4.
    M. De Koninck, T. Brousse, and D. Bélanger, Electrochim. Acta 48, 1425 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Maja, C. Orecchia, M. Strano, P. Tosco, and M. Vanni, Electrochim. Acta 46, 423 (2000).CrossRefGoogle Scholar
  6. 6.
    L. Ojefors and L. Carlsson, J. Power Sources 2, 287 (1977).CrossRefGoogle Scholar
  7. 7.
    K.F. Blurton and A.F. Sammells, J. Power Sources 4, 263 (1979).CrossRefGoogle Scholar
  8. 8.
    A.M. Kannan and A.K. Shukla, J. Power Sources 35, 113 (1991).CrossRefGoogle Scholar
  9. 9.
    J. Cerny and K. Micka, J. Power Sources 25, 111 (1989).CrossRefGoogle Scholar
  10. 10.
    P. Periasamy, B. Ramesh Babu, and S. Venkatakrishna Iyer, J. Power Sources 58, 35 (1996).CrossRefGoogle Scholar
  11. 11.
    P. Periasamy, B. Ramesh Babu, and S. Venkatakrishna Iyer, J. Power Sources 63, 79 (1996).CrossRefGoogle Scholar
  12. 12.
    T.S. Balasubramanian and A.K. Shukla, J. Power Sources 41, 99 (1993).CrossRefGoogle Scholar
  13. 13.
    C.A. Caldas, M.C. Lopes, and I.A. Carlos, J. Power Sources 74, 108 (1998).CrossRefGoogle Scholar
  14. 14.
    B.T. Hang, M. Eashira, I. Watanabe, S. Okada, J.I. Yamaki, S.H. Yoon, and I. Mochida, J. Power Sources 143, 256 (2005).CrossRefGoogle Scholar
  15. 15.
    B.T. Hang, T. Watanabe, M. Eashira, S. Okada, J.I. Yamaki, S. Hata, S.H. Yoon, and I. Mochida, J. Power Sources 150, 261 (2005).CrossRefGoogle Scholar
  16. 16.
    B.T. Hang, T. Watanabe, M. Eashira, I. Watanabe, S. Okada, and J. Yamaki, Electrochem. Solid-State Lett. 8, A476 (2005).CrossRefGoogle Scholar
  17. 17.
    A.K. Shukla, M.K. Ravikumar, and T.S. Balasubramanian, J. Power Sources 51, 29 (1994).CrossRefGoogle Scholar
  18. 18.
    K. Vijayamohanan, T.S. Balasubramanian, and A.K. Shukla, J. Power Sources 34, 269 (1991).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.International Training Institute for Materials ScienceHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Department of High TechnologyMinistry of Science and TechnologyHanoiVietnam

Personalised recommendations