Advertisement

Journal of Electronic Materials

, Volume 46, Issue 3, pp 1628–1636 | Cite as

The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

  • Niman H. Alshareef
  • Daniel Whitehair
  • Chuan XiaEmail author
Article

Abstract

In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

Graphical Abstract

Keywords

Palm-leaf-derived carbon supercapacitor energy storage high energy density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2016_5206_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1145 kb)

References

  1. 1.
    J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, ACS Nano 9, 2556 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Yan, Q. Wang, T. Wei, and Z.J. Fan, Adv. Energy Mater. 4, 1300816 (2014).CrossRefGoogle Scholar
  3. 3.
    S.M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi, Int. J. Electrochem. Sci. 9, 4072 (2014).Google Scholar
  4. 4.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).CrossRefGoogle Scholar
  5. 5.
    B. Ahmed, C. Xia, and H.N. Alshareef, Nano Today. 11, 250 (2016).CrossRefGoogle Scholar
  6. 6.
    Z. Li, Z.W. Xu, H.L. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X.H. Tan, and D. Mitlin, Energy Environ. Sci. 7, 1708 (2014).CrossRefGoogle Scholar
  7. 7.
    C. Xia, W. Chen, X.B. Wang, M.N. Hedhili, N.N. Wei, and H.N. Alshareef, Adv. Energy Mater. 5, 1401805 (2015).CrossRefGoogle Scholar
  8. 8.
    E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, and D. Mitlin, ACS Nano 8, 7115 (2014).CrossRefGoogle Scholar
  9. 9.
    L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  10. 10.
    H. Zanin, E. Saito, H. Ceragioli, V. Baranauskas, and E. Corat, Mater. Res. Bull. 49, 487 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Zhu, X.L. Wang, F. Yang, and X.R. Yang, Adv. Mater. 23, 2745 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C. Holt, and D. Mitlin, Adv. Energy Mater. 2, 431 (2012).CrossRefGoogle Scholar
  13. 13.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st ed. (New York: Kluwer Academic/Plenum, 1999).CrossRefGoogle Scholar
  14. 14.
    C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, Adv. Funct. Mater. 17, 1828 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Stein, Z. Wang, and M.A. Fierke, Adv. Mater. 21, 265 (2009).CrossRefGoogle Scholar
  16. 16.
    Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Adv. Mater. 24, 5610 (2012).CrossRefGoogle Scholar
  17. 17.
    Z. Li, Z. Xu, X. Tan, H. Wang, C.M. Holt, T. Stephenson, B.C. Olsen, and D. Mitlin, Energy Environ. Sci. 6, 871 (2013).CrossRefGoogle Scholar
  18. 18.
    V. Khomenko, E. Frackowiak, and F. Beguin, Electrochim Acta. 50, 2499 (2005).CrossRefGoogle Scholar
  19. 19.
    C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, and H.N. Alshareef, Adv. Mater. 28, 77 (2016).CrossRefGoogle Scholar
  20. 20.
    J. Ding, H.L. Wang, Z. Li, A. Kohandehghan, K. Cui, Z.W. Xu, B. Zahiri, X.H. Tan, E.M. Lotfabad, B.C. Olsen, and D. Mitlin, ACS Nano 7, 11004 (2013).CrossRefGoogle Scholar
  21. 21.
    B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, and A. Salehi-Khojin, Nat. Commun. 4, 2819 (2013).Google Scholar
  22. 22.
    C. Xia, W. Chen, X. Wang, M.N. Hedhili, N. Wei, and H.N. Alshareef, Adv. Energy Mater. 5, 1401805 (2015).CrossRefGoogle Scholar
  23. 23.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  24. 24.
    C.M. Parlett, K. Wilson, and A.F. Lee, Chem. Soc. Rev. 42, 3876 (2013).CrossRefGoogle Scholar
  25. 25.
    Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, and S. Park, Adv. Mater. 25, 1993 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Biswal, A. Banerjee, M. Deo, and S. Ogale, Energy Environ. Sci. 6, 1249 (2013).CrossRefGoogle Scholar
  27. 27.
    F.-C. Wu, R.-L. Tseng, C.-C. Hu, and C.-C. Wang, J. Power Sources 144, 302 (2005).CrossRefGoogle Scholar
  28. 28.
    B. Dyatkin, O. Gogotsi, B. Malinovskiy, Y. Zozulya, P. Simon, and Y. Gogotsi, J. Power Sources 306, 32 (2016).CrossRefGoogle Scholar
  29. 29.
    E. Tee, I. Tallo, T. Thomberg, A. Jänes, and E. Lust, J. Electrochem. Soc. 163, A1317 (2016).CrossRefGoogle Scholar
  30. 30.
    B. Krüner, J. Lee, N. Jäckel, A. Tolosa, and V. Presser, ACS. Appl. Mater. Inter. 8, 9104 (2016).CrossRefGoogle Scholar
  31. 31.
    P. Serp and J.L. Figueiredo, Carbon Materials for Catalysis (NJ: Wiley, 2009), p. 219.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Materials Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations