Journal of Electronic Materials

, Volume 46, Issue 3, pp 1607–1611 | Cite as

Microcantilever Fracture Testing of Intermetallic Cu3Sn in Lead-Free Solder Interconnects

  • Bastian Philippi
  • Kurt Matoy
  • Johannes Zechner
  • Christoph Kirchlechner
  • Gerhard Dehm


Driven by legislation and the abolishment of harmful and hazardous lead-containing solders, lead-free replacement materials are in continuous development. Assessment of the mechanical properties of intermetallic phases such as Cu3Sn that evolve at the interface between solder and copper metalization is crucial to predict performance and meet the high reliability demands in typical application fields of microelectronics. While representative material parameters and fracture properties are required to assess mechanical behavior, indentation-based testing produces different results depending on the sample type. In this work, focused ion beam machined cantilevers were used to unravel the impact of microstructure on the fracture behavior of Sn-Ag-Cu lead-free solder joints. Fracture testing on notched cantilevers showed brittle fracture for Cu3Sn. Unnotched samples allowed measurement of the fracture stress, to estimate the critical defect size in unnotched Cu3Sn microcantilevers.


Lead-free solder Cu3Sn small-scale testing fracture toughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 854247) and the Carinthian Economic Promotion Fund (KWF, Contract KWF-1521/28101/40388).


  1. 1.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995).CrossRefGoogle Scholar
  2. 2.
    D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).CrossRefGoogle Scholar
  3. 3.
    C.M.L. Wu and M.L. Huang, J. Electron. Mater. 31, 442 (2002).CrossRefGoogle Scholar
  4. 4.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  6. 6.
    M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, and T. Shibuya, Microelectron. Reliab. 42, 951 (2002).CrossRefGoogle Scholar
  7. 7.
    K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).CrossRefGoogle Scholar
  8. 8.
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, J. Mater. Sci. Mater. Electron. 19, 383 (2008).CrossRefGoogle Scholar
  9. 9.
    L. Jiang, H. Jiang, and N. Chawla, J. Electron. Mater. 41, 2083 (2012).CrossRefGoogle Scholar
  10. 10.
    P. Borgesen, L. Yin, and P. Kondos, Microelectron. Reliab. 51, 837 (2011).CrossRefGoogle Scholar
  11. 11.
    T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, and K.N. Tu, Scr. Mater. 68, 241 (2013).CrossRefGoogle Scholar
  12. 12.
    W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).CrossRefGoogle Scholar
  13. 13.
    D.R. Frear and P.T. Vianco, Metall. Mater. Trans. A 25, 1509 (1994).CrossRefGoogle Scholar
  14. 14.
    T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R Rep. 49, 1 (2005).CrossRefGoogle Scholar
  15. 15.
    N. Zhang, Y. Shi, Z. Xia, Y. Lei, F. Guo, and X. Li, J. Electron. Mater. 37, 1631 (2008).CrossRefGoogle Scholar
  16. 16.
    S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Wiese, M. Roellig, M. Mueller, S. Bennemann, M. Petzold, and K. Wolter, in Electronic Components Technology Conference (2007), pp. 548–557.Google Scholar
  18. 18.
    M. Kerr and N. Chawla, JOM 56, 50 (2004).Google Scholar
  19. 19.
    G. Ghosh, J. Mater. Res. 19, 1439 (2004).CrossRefGoogle Scholar
  20. 20.
    J.S. Kang, R.A. Gagliano, G. Ghosh, and M.E. Fine, J. Electron. Mater. 31, 1238 (2002).CrossRefGoogle Scholar
  21. 21.
    L. Jiang and N. Chawla, Scr. Mater. 63, 480 (2010).CrossRefGoogle Scholar
  22. 22.
    L. Liu, Z. Chen, C. Liu, Y. Wu, and B. An, Intermetallics 76, 10 (2016).CrossRefGoogle Scholar
  23. 23.
    K. Matoy, H. Schönherr, T. Detzel, and G. Dehm, Thin Solid Films 518, 5796 (2010).CrossRefGoogle Scholar
  24. 24.
    D. Di Maio and S.G. Roberts, J. Mater. Res. 20, 299 (2005).CrossRefGoogle Scholar
  25. 25.
    D.E.J. Armstrong, M.E. Rogers, and S.G. Roberts, Scr. Mater. 61, 741 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Wurster, C. Motz, and R. Pippan, Philos. Mag. 92, 1803 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Schaufler, C. Schmid, K. Durst, and M. Göken, Thin Solid Films 522, 480 (2012).CrossRefGoogle Scholar
  28. 28.
    B. N. Jaya, C. Kirchlechner, and G. Dehm, J. Mater. Res. 1, 686 (2015).Google Scholar
  29. 29.
    B. Philippi, K. Matoy, J. Zechner, C. Kirchlechner, and G. Dehm, Scr. Mater. 123, 38 (2016).CrossRefGoogle Scholar
  30. 30.
    K. Nogita, C.M. Gourlay, and T. Nishimura, JOM 61, 45 (2009).CrossRefGoogle Scholar
  31. 31.
    J.P. Best, J. Zechner, I. Shorubalko, J.V. Oboňa, J. Wehrs, M. Morstein, and J. Michler, Scr. Mater. 112, 71 (2016).CrossRefGoogle Scholar
  32. 32.
    K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, and G. Dehm, Thin Solid Films 518, 247 (2009).CrossRefGoogle Scholar
  33. 33.
    R.J. Fields and S.R. Low III, in Metal Science of Joining, Proceedings of TMS Symposium (1991).Google Scholar
  34. 34.
    B. Balakrisnan, C.C. Chum, M. Li, Z. Chen, and T. Cahyadi, J. Electron. Mater. 32, 166 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Bastian Philippi
    • 1
  • Kurt Matoy
    • 2
  • Johannes Zechner
    • 3
  • Christoph Kirchlechner
    • 1
    • 4
  • Gerhard Dehm
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Infineon Technologies Austria AGVillachAustria
  3. 3.Kompetenzzentrum Automobil- und Industrieelektronik GmbHVillachAustria
  4. 4.Department of Materials PhysicsMontanuniversität LeobenLeobenAustria

Personalised recommendations