Journal of Electronic Materials

, Volume 46, Issue 3, pp 1576–1586 | Cite as

Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

  • Chuantong Chen
  • Shijo Nagao
  • Hao Zhang
  • Jinting Jiu
  • Tohru Sugahara
  • Katsuaki Suganuma
  • Tomohito Iwashige
  • Kazuhiko Sugiura
  • Kazuhiro Tsuruta
Article

Abstract

The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young’s modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson’s ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

Keywords

Sintered Ag paste mechanical properties plastic deformation mechanism SiC wide-bandgap power devices 3D finite-element modeling size effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Suganuma, S.J. Kim, and K.S. Kim, J. Miner. Met. Mater. Soc. 61, 64 (2009).CrossRefGoogle Scholar
  2. 2.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Mater. Sci. Eng. 176, 283 (2011).CrossRefGoogle Scholar
  3. 3.
    L.N. Ramanathan, J.W. Jang, J.K. Lin, and D.R. Frear, J. Electron. Mater. 34, 43 (2005).CrossRefGoogle Scholar
  4. 4.
    K.S. Kim, C.H. Yu, N.H. Kim, N.K. Kim, H.J. Chang, and E.G. Chang, Microelectron. Reliab. 43, 757 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Sakamoto and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 923 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Sakamoto, T. Sugahara, and K. Suganuma, J. Mater. Sci. Mater. Electron. 24, 1332 (2013).CrossRefGoogle Scholar
  7. 7.
    H.S. Chin, K.Y. Cheong, and A.B. Ismail, Metal. Mater. Trans. B 41, 824 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Wang, X. Chen, G.-Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 1333 (2007).CrossRefGoogle Scholar
  9. 9.
    J.G. Bai and G.-Q. Lu, IEEE Trans. Device Mater. Reliab. 6, 436 (2006).CrossRefGoogle Scholar
  10. 10.
    J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, IEEE Trans. Compon. Packag. Technol. 29, 589 (2006).CrossRefGoogle Scholar
  11. 11.
    R. Kisiel and Z. Szczepanski, Microelectron. Reliab. 49, 627 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Ide, S. Angatas, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A 93, 467 (2008).CrossRefGoogle Scholar
  14. 14.
    H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, and S. Isoda, J. Electron. Mater. 39, 1233 (2010).CrossRefGoogle Scholar
  15. 15.
    H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).CrossRefGoogle Scholar
  16. 16.
    J.F. Yan, G.S. Zou, A.P. Wu, J.L. Ren, J.C. Yan, A.M. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Wang, H.J. Ji, M.Y. Li, and C.Q. Wang, Mater. Lett. 85, 61 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).CrossRefGoogle Scholar
  19. 19.
    S.J. Kim, E.A. Stach, and C.A. Handwerker, Appl. Phys. Lett. 96, 144101 (2010).CrossRefGoogle Scholar
  20. 20.
    K.S. Siow, J. Alloys Compd. 514, 6 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Mei, G.-Q. Lu, X. Chen, G. Chen, S. Luo, and D. Ibitayo, J. Electron. Mater. 40, 2119 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. Mei, G.-Q. Lu, X. Chen, G. Chen, S. Luo, and D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 316 (2011).CrossRefGoogle Scholar
  23. 23.
    Y. Mei, G.-Q. Lu, X. Chen, G. Chen, S. Luo, and D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 312 (2011).CrossRefGoogle Scholar
  24. 24.
    D. Yu, X. Chen, G. Chen, G.-Q. Lu, and Z. Wang, Mater. Des. 30, 4574 (2009).CrossRefGoogle Scholar
  25. 25.
    T. Herboth, M. Gunther, A. Fix, and J. Wilde, Proceedings of 63rd IEEE ECTC 1621 (2013). doi:10.1109/ECTC.2013.6575789
  26. 26.
    G. Chen, D. Han, Y.H. Mei, X. Cao, T. Wang, X. Chen, and G.-Q. Lu, IEEE Trans. Device Mater. Reliab. 12, 124 (2012).CrossRefGoogle Scholar
  27. 27.
    Y. Mei, T. Wang, X. Cao, G. Chen, G.-Q. Lu, and X. Chen, J. Electron. Mater. 41, 3152 (2012).CrossRefGoogle Scholar
  28. 28.
    X. Chen, R. Li, K. Qi, and G.-Q. Lu, J. Electron. Mater. 37, 1574 (2008).CrossRefGoogle Scholar
  29. 29.
    G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.-Q. Lu, and X. Chen, J. Electron. Mater. 41, 782 (2012).CrossRefGoogle Scholar
  30. 30.
    C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, Proceedings of 66th IEEE ECTC, 2058 (2016). doi:10.1109/ECTC.2016.59
  31. 31.
    T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, and S.F. Luo, IEEE. Trans. Compon. Packag. Manuf. 33, 98 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Michaelides and S.K. Sitaraman, Proceedings of IEEE Intersociety Conference on Thermal Phenomena 193 (1998). doi:10.1109/ITHERM.1998.689540
  33. 33.
    S.C. Machuga, S.E. Lindsey, K.D. Moore, and A.F. Skipor, Proceedings of 13th IEEE/CHMT International Electronics Manufacturing Technology Symposium 53 (1992).Google Scholar
  34. 34.
    Z.Johnson, K.Ramakrishna, B.Joiner, and M.Eyman, Proceedings of 13th IEEE SEMI-THERM Symposium 1 (1997). doi:10.1109/STHERM.1997.566777
  35. 35.
    Y. Mei, G. Chen, G.-Q. Lu, and X. Chen, Int. J. Adhes. Adhes. 35, 88 (2012).CrossRefGoogle Scholar
  36. 36.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  37. 37.
    S. Sakamoto and K. Suganuma, Proceedings of 18th IEEE Microelectronics and Packaging Conference (EMPC) 1 (2011).Google Scholar
  38. 38.
    C. Chen, K. Koiwa, N. Shishido, S. Kamiya, M. Omiya, H. Sato, M. Nishida, T. Suzuki, T. Nakamura, T. Nokuo, and T. Nagasawa, Eng. Fract. Mech. 131, 371 (2014).CrossRefGoogle Scholar
  39. 39.
    J. Weertman, Trans. ASM 61, 681 (1968).Google Scholar
  40. 40.
    O.D. Sherby and P.M. Burke, Progr. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
  41. 41.
    R. Raj and M.F. Ashby, Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
  42. 42.
    Y. Kariya, H. Yamaguchi, M. Itako, N. Mizumura, and K. Sasaki, J. Smart Process. 2, 160 (2013). doi:10.7791/jspmee.2.160.CrossRefGoogle Scholar
  43. 43.
    N. Murata, N. Saito, F. Endo, K. Tamakawa, K. Suzuki, and H. Miura, Proceedings of 65th IEEE ECTC, 2119 (2011). doi:10.1109/ECTC.2011.5898811
  44. 44.
    M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, and K. Bertoldi, Adv. Mater. 26, 2365 (2014).CrossRefGoogle Scholar
  45. 45.
    K. Qi, X. Chen, and G.Q. Lu, Solder. Surf. Mount. Technol. 20, 8 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Chuantong Chen
    • 1
  • Shijo Nagao
    • 1
  • Hao Zhang
    • 1
  • Jinting Jiu
    • 1
  • Tohru Sugahara
    • 1
  • Katsuaki Suganuma
    • 1
  • Tomohito Iwashige
    • 2
  • Kazuhiko Sugiura
    • 2
  • Kazuhiro Tsuruta
    • 2
  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  2. 2.Research Division 3Denso CorporationNisshinJapan

Personalised recommendations