Journal of Electronic Materials

, Volume 46, Issue 5, pp 3071–3075 | Cite as

Quantum Molecular Dynamical Calculations of PEDOT 12-Oligomer and its Selenium and Tellurium Derivatives

  • Amina Mirsakiyeva
  • Håkan W. Hugosson
  • Xavier Crispin
  • Anna Delin
Open Access
Article

Abstract

We present simulation results, computed with the Car–Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.

Keywords

PEDOT PEDOS PEDOTe tellurium density functional theory dihedral angle 

Notes

Acknowledgements

The authors acknowledge financial support from Vetenskapsrådet (VR), The Royal Swedish Academy of Sciences (KVA), the Knut and Alice Wallenberg Foundation (KAW), Carl Tryggers Stiftelse (CTS), Swedish Energy Agency (STEM), Swedish Foundation for Strategic Research (SSF), and Erasmus Mundus Action 2 TARGET II consortium. We are grateful to Prof. Mathieu Linares for interesting scientific discussions and valuable suggestions. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Center (NSC), Linköping University, the PDC Centre for High Performance Computing (PDC-HPC), KTH, and the High Performance Computing Center North (HPC2N), Umeå University.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. 1.
    O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. (2011). doi:10.1038/nmat3012.
  2. 2.
    J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahn, and T. Gessner, J. Mat. Chem. A (2013). doi:10.1039/C3TA11209H.
  3. 3.
    E.J. Bae, Y.H. Kang, K.-S. Jang, and S.Y. Cho, Sci. Rep. (2016). doi:10.1038/srep18805.
  4. 4.
    K. Ando, S. Watanabe, S. Mooser, E. Saitoh, and H. Sirringhaus, Nat. Mater. (2013). doi:10.1038/nmat3634.
  5. 5.
    R. Car and M. Parrinello, Phys. Rev. Lett. (1985). doi:10.1103/PhysRevLett.55.2471.
  6. 6.
    CPMD, Copyright IBM Corp (1990-2015), Copyright MPI für Festkörperforschung Stuttgart (1997–2001). http:// www.cpmd.org/. Accessed 7 Nov 2016.
  7. 7.
    A.D. Becke, Phys. Rev. A (1988). doi:10.1103/PhysRevA.38.3098.
  8. 8.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B (1988). doi:10.1103/PhysRevB.37.785.
  9. 9.
    N. Troullier and J.L. Martins, Phys. Rev. B (1991). doi:10.1103/PhysRevB.43.1993.
  10. 10.
    E.-G. Kim and J.-L. Brédas, J. Am. Chem. Soc. (2008). doi:10.1021/ja806389b.
  11. 11.
    S. Nosé, Mol. Phys. (1984). doi:10.1080/00268978400101201.
  12. 12.
    W.G. Hoover, Phys. Rev. A (1985). doi:10.1103/PhysRevA.31.1695.
  13. 13.
    Y.H. Wijsboom, A. Patra, S.S. Zade, Y. Sheynin, M. Li, L.J.W. Shimon, and M. Bendikov, Angew. Chem. Int. Ed. (2009). doi:10.1002/anie.200901231.
  14. 14.
    C.I. Bayly, P. Cieplak, W. Cornell, and P.A. Kollman, J. Phys. Chem. (1993). doi:10.1021/j100142a004.
  15. 15.
    S. Das and S.S. Zade, Chem. Commun. (2010). doi:10.1039/B915826J.
  16. 16.
    A. Patra, M. Bendikov, and S. Chand, Acc. Chem. Res. (2014). doi:10.1021/ar4002284.
  17. 17.
    S.S. Zade, N. Zamoshchik, and M. Bendikov, Acc. Chem. Res. (2011). doi:10.1021/ar1000555.
  18. 18.
    J. Sjöqvist, J. Maria, R.A. Simon, M. Linares, P. Norman, K.P.R. Nilsson, and M. Lindgren, J. Phys. Chem. A (2014). doi:10.1021/jp506797j.
  19. 19.
    A. Patra, Y.H. Wijsboom, S.S. Zade, M. Li, Y. Sheynin, G. Leitus, and M. Bendikov, J. Am. Chem. Soc. (2008). doi:10.1021/ja8018675.

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Material and Nanophysics DepartmentKTH Royal Institute of TechnologyKistaSweden
  2. 2.Swedish e-Science Research Center, KTHStockholmSweden
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Department of Electronics, Mathematics and Natural SciencesUniversity of GävleGävleSweden
  5. 5.Laboratory of Organic Electronics, Department of Science and TechnologyLinköping UniversityNorrköpingSweden

Personalised recommendations