Journal of Electronic Materials

, Volume 46, Issue 5, pp 3242–3248 | Cite as

Phase Formation and Thermoelectric Properties of Doped Higher Manganese Silicides (Mn15Si26)

  • Hwijong Lee
  • Gwansik Kim
  • Byunghun Lee
  • Kyu Hyoung Lee
  • Wooyoung Lee


We herein report substitutional doping effects on the electronic and thermal transport properties of higher manganese silicides (HMS) Mn15Si26. Polycrystalline bulks of Mn0.972A0.028Si1.80 and MnSi1.75B0.028 (A = V, Cr, Mo/B = Al, Ge) were fabricated by a solid-state reaction combined with the spark plasma sintering technique, and their thermoelectric properties were evaluated. We found that thermoelectric performance of Mn15Si26 was significantly enhanced due to the simultaneous improvement in electronic transport and phonon scattering via partial substitution of foreign atoms at Mn- and/or Si-sites. Through the small amount of Cr doping at the Mn-site and Al and Ge doping at the Si-site, the power factor was improved due to enhancement in density of the state's effective mass. Thermal transport properties could be also manipulated due to the point defect phonon scattering effect, and reduced lattice thermal conductivity was obtained with Ge-doped HMS. As a consequence, the maximum dimensionless figure␣of merit ZT of 0.64 at 773 K (increased 50% compared to undoped Mn15Si26) was obtained in Ge-doped Mn15Si26.


Substitutional doping higher manganese silicide thermoelectric phonon scattering density of states effective mass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Korea government (MSIP) (2014R1A2A1A10053869), the Priority Research Centers Program (2009-0093823) through the National Research Foundation of Korea (NRF), and the Industrial Fundamental Technology Development Program (10052977) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.


  1. 1.
    I. Nishida, J. Mater. Sci. 7, 435 (1972).CrossRefGoogle Scholar
  2. 2.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 31.Google Scholar
  3. 3.
    X. Chen, A. Weathers, J. Carrete, S. Mukhopadhyay, O. Delaire, D.A. Stewart, N. Mingo, S.N. Girard, J. Ma, D.L. Abernathy, J. Yan, R. Sheshka, D.P. Sellan, F. Meng, S. Jin, J. Zhou, and L. Shi, Nat. Commun. 6, 6723 (2015).CrossRefGoogle Scholar
  4. 4.
    A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).CrossRefGoogle Scholar
  5. 5.
    X. She, X. Su, H. Du, T. Liang, G. Zheng, Y. Yan, R. Akram, C. Uher, and X. Tang, J. Mater. Chem. C 3, 12116 (2015).CrossRefGoogle Scholar
  6. 6.
    G. Bernard-Granger, M. Souler, H. Ihou-Mouko, C. Navone, M. Boidot, J. Leforestier, and J. Simon, J. Alloys Compd. 618, 403 (2015).CrossRefGoogle Scholar
  7. 7.
    V. Ponnambalam, D.T. Morelli, S. Bhattacharya, and T.M. Tritt, J. Alloys Compd. 580, 598 (2013).CrossRefGoogle Scholar
  8. 8.
    X. Chen, S.N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J.B. Goodenough, J. Zhou, and L. Shi, Adv. Energy Mater. 4, 1400452 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Chen, J. Zhou, J.B. Goodenough, and L. Shi, J. Mater. Chem. C 3, 10500 (2015).CrossRefGoogle Scholar
  10. 10.
    I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).CrossRefGoogle Scholar
  11. 11.
    W. Luo, H. Li, W. Hao, and X. Tang, J. Electron. Mater. 40, 1233 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J.B. Goodenough, and L. Shi, J. Appl. Phys. 114, 173705 (2013).CrossRefGoogle Scholar
  13. 13.
    W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefGoogle Scholar
  15. 15.
    P. Norouzzadeh, Z. Zamanipour, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 112, 124308 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Pokhrel, Z.P. Degregorio, J.M. Higgins, S.N. Girard, and S. Jin, Chem. Mater. 25, 632 (2013).CrossRefGoogle Scholar
  17. 17.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  18. 18.
    D.Y. Nhi Trung, D. Berthebaud, F. Gascoin, and H. Kleinke, J. Electron. Mater. 44, 3603 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Hwijong Lee
    • 1
  • Gwansik Kim
    • 1
  • Byunghun Lee
    • 1
  • Kyu Hyoung Lee
    • 2
  • Wooyoung Lee
    • 1
  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea
  2. 2.Department of Nano Applied EngineeringKangwon National UniversityChuncheonSouth Korea

Personalised recommendations