Journal of Electronic Materials

, Volume 46, Issue 5, pp 2839–2843 | Cite as

Enhanced Thermoelectric Properties of Melt-Spun p-Type Yb0.9Fe3CoSb12

  • Geonsik Son
  • Kyu Hyoung LeeEmail author
  • Soon-Mok Choi


We herein report an enhancement of the thermoelectric properties of p-type Yb0.9Fe3CoSb12 skutterudite by melt spinning combined with spark plasma sintering (SPS). By thermal aging (873 K for 120 h) of the starting Yb0.9Fe3 CoSb12 compound for melt spinning, fabricated by conventional melting and quenching, highly dense single phase bulks with reduced grain sizes of ~300 nm are successfully fabricated after SPS. The power factor value of the sample (~3.6 mW m−1 K−2 at 723 K) is increased, benefiting from an enhancement of the electrical conductivity due to the elimination of the secondary phase CoSb2 during the thermal aging process. In addition, lattice thermal conductivity is significantly decreased due to the reduced grain size, thus intensifying the grain boundary phonon scattering. Through these synergetic effects, the maximum dimensionless figure of merit ZT increases by 25% (0.70 at 723 K) compared to a pristine sample with microscale grains.


Thermoelectric skutterudite melt spinning spark plasma sintering phonon scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the Industrial Fundamental Technology Development Program (10052977) of the Ministry of Trade, Industry and Energy (MOTIE) of Korea.


  1. 1.
    G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (New York: CRC Press, 1995), p. 407.Google Scholar
  2. 2.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  3. 3.
    X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  4. 4.
    J.R. Salvador, R.A. Waldo, C.A. Wong, M. Tessema, D.N. Brown, D.J. Miller, H. Wang, A.A. Wereszczak, and W. Cai, Mater. Sci. Eng. B 178, 1087 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Ballikaya, N. Uzar, S. Yildirim, J.R. Salvador, and C. Uher, J. Solid State Chem. 193, 31 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Uher, C.P. Li, and S. Balikaya, J. Electron. Mater. 39, 9 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Zhou, X. Li, G. Chen, and R. Yang, Phys. Rev. B 82, 115308 (2010).CrossRefGoogle Scholar
  8. 8.
    J.P. Heremans, C.M. Thrush, and D.T. Morelli, J. Appl. Phys. 98, 063703 (2005).CrossRefGoogle Scholar
  9. 9.
    W.J. Xie, J. He, H.J. Kang, X.F. Tang, S. Zhu, M. Laver, S.Y. Wang, J.R.D. Copley, C.M. Brown, Q.J. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
  10. 10.
    W.J. Xie, Y.G. Yan, X.F. Tang, Q.J. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).CrossRefGoogle Scholar
  11. 11.
    Y. Dong, P. Puneet, T.M. Tritt, and G.S. Nolas, J. Solid State Chem. 209, 1 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Zhou, D. Morelli, X. Zhou, G. Wang, and C. Uher, Intermetallics 19, 1390 (2011).CrossRefGoogle Scholar
  13. 13.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  14. 14.
    G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett. 103, 183904 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.School of Energy, Materials and Chemical EngineeringKorea University of Technology and EducationCheonanRepublic of Korea
  2. 2.Department of Nano Applied EngineeringKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations