Journal of Electronic Materials

, Volume 46, Issue 2, pp 817–825

Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

  • Hélène Conseil-Gudla
  • Morten S. Jellesen
  • Rajan Ambat
Article
  • 110 Downloads

Abstract

Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.

Keywords

Corrosion ionic contamination leakage current moisture printed circuit boards reliability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hienonen and R. Lahtinen, Espoo (Finland: VTT Publications, 2007), p. 413Google Scholar
  2. 2.
    P.R. Roberge, R.D. Klassen, and P.W. Haberecht, Mater. Des. 23, 321 (2002).CrossRefGoogle Scholar
  3. 3.
    M.G. Song, B. Azarian, and M.H. Pecht, IPC APEX EXPO (2012), p. 3.Google Scholar
  4. 4.
    C. Cirolia and F. Finan, in IEEE Applied Power Electronics Conference and Exposition: APEC (2001), pp. 238–242.Google Scholar
  5. 5.
    C.W. Harmon, R.L. Grimm, T.M. McIntire, M.D. Peterson, B. Njegic, V.M. Angel, A. Alshawa, J.S. Underwood, D.J. Tobias, R.B. Gerber, M.S. Gordon, J.C. Hemminger, and S.A. Nizkorodov, J. Phys. Chem. B 114, 7 (2010).CrossRefGoogle Scholar
  6. 6.
    W. Drost-Hansen, Ind. Eng. Chem. 61, 11 (1969).CrossRefGoogle Scholar
  7. 7.
    S.J. Krumbein, IEEE Trans. Compon. Hybrids Manuf. Technol. 11, 1 (1988).CrossRefGoogle Scholar
  8. 8.
    D. Minzari, M.S. Jellesen, P. Møller, and R. Ambat, Corros. Sci. 53, 10 (2011).Google Scholar
  9. 9.
    H. Qi, S. Ganesan, and M. Pecht, Microelectron. Reliab. 48, 5 (2008).CrossRefGoogle Scholar
  10. 10.
    M.S. Jellesen, D. Minzari, U. Rathinavelu, P. Møller, and R. Ambat, Eng. Fail. Anal. 17, 6 (2010).CrossRefGoogle Scholar
  11. 11.
    D. Minzari, M.S. Jellesen, P. Møller, P. Wahlberg, and R. Ambat, IEEE Trans. Device Mater. Reliab. 9, 3 (2009).CrossRefGoogle Scholar
  12. 12.
    M.S. Jellesen, D. Minzari, U. Rathinavelu, P. Møller, and R. Ambat, ECS Trans. 25, 30 (2010).Google Scholar
  13. 13.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, IEEE Trans. Device Mater. Reliab. 14, 1 (2014).CrossRefGoogle Scholar
  14. 14.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, Corros. Eng. Sci. Technol. 48, 6 (2013).CrossRefGoogle Scholar
  15. 15.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).CrossRefGoogle Scholar
  16. 16.
    K.M. Adams, J.E. Anderson, and Y.B. Graves, Circuit World 20, 2 (1994).CrossRefGoogle Scholar
  17. 17.
    T. Takemoto, R.M. Latanision, T.W. Eagar, and A. Matsunawa, Corros. Sci. 39, 8 (1997).CrossRefGoogle Scholar
  18. 18.
    B. Medgyes, B. Illes, D. Rigler, M. Ruszinko, and L. Gal, The 19th International Symposium for Design and Technology in Electronic Packaging (SIITME) (2013).Google Scholar
  19. 19.
    M.-S. Jung, S.-B. Lee, H.-Y. Lee, C.-S. Ryu, Y.-G. Ko, H.-W. Park, and Y.-C. Joo, IEEE Trans. Device Mater. Reliab. 14, 1 (2014).CrossRefGoogle Scholar
  20. 20.
    B.-I. Noh, J.-B. Lee, and S.-B. Jung, Microelectron. Reliab. 48, 4 (2008).CrossRefGoogle Scholar
  21. 21.
    O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Ostermann, and H. Perrot, J. Electroanal. Chem. 606, 2 (2007).Google Scholar
  22. 22.
    IPC-TM-650 Test methods manual, 2, (2000), pp. 2–5.Google Scholar
  23. 23.
    G. Harsányi, Microelectron. Reliab. 39, 9 (1999).CrossRefGoogle Scholar
  24. 24.
    J.-Y. Jung, S.-B. Lee, H.-Y. Lee, Y.-C. Joo, and Y.-B. Park, J. Electron. Mater. 37, 8 (2008).CrossRefGoogle Scholar
  25. 25.
    T.S. Light and S.L. Licht, Anal. Chem. 59, 23 (1987).CrossRefGoogle Scholar
  26. 26.
    D. Minzari, F.B. Grumsen, M.S. Jellesen, P. Møller, and R. Ambat, Corros. Sci. 53, 5 (2011).Google Scholar
  27. 27.
    G. Wranglen, Acta Electrochim. 2, 1 (1960).CrossRefGoogle Scholar
  28. 28.
    B. Medgyes, X. Zhong, and G. Harsányi, J. Mater. Sci.: Mater. Electron. 26, 4 (2015).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Materials and Surface Engineering, Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations