Journal of Electronic Materials

, Volume 46, Issue 5, pp 2782–2789 | Cite as

Fabrication of a Nanoscale Electrical Contact on a Bismuth Nanowire Encapsulated in a Quartz Template by Using FIB-SEM

  • Masayuki Murata
  • Atsushi Yamamoto
  • Yasuhiro Hasegawa
  • Takashi Komine
Article

A method to fabricate an electrode on a 110-nm-diameter Bi nanowire, encapsulated in a quartz template, was established using a dual beam instrument equipped with a focused ion beam and a scanning electron microscope. A fabrication method has already been successfully developed to obtain suitable Ohmic contact on both ends of Bi nanowires (several hundred nanometers in diameter) by first polishing the ends of the nanowires, and then depositing titanium/copper thin-films via an ion-plating method. However, with this method, it was difficult to obtain suitable electrodes on Bi nanowires with diameters less than 300 nm. Therefore, in order to understand why it was not possible to establish an electrical contact in small-diameter Bi nanowires, the vertical section of the fabricated electrode and the end of a 110-nm-diameter Bi nanowire were observed using a focused ion beam scanning electron microscope. A vacant area was observed between the end of the nanowire and the titanium thin-film, indicating a possible cause for the electrical contact failure. This implies that the quartz-encapsulated Bi nanowire is selectively removed when it undergoes polishing due to the great difference in hardness between Bi and quartz. A local electrode, which would connect the exposed area of the Bi nanowire and the metal thin-films on the surface of the quartz template, was fabricated by tungsten deposition using an electron beam. After fabrication of the opposite-end electrode by the same method, an electrical connection was successfully confirmed by measuring the voltage between both ends of the metal thin-films with a circuit tester. Ohmic contact was confirmed by measuring the current–voltage characteristics between the fabricated electrodes. As a result, the electrical resistivity and Seebeck coefficient were successfully measured at 300 K.

Keywords

Bi nanowire thermoelectrics focused ion beam ohmic contact quartz template 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported in part by a Grant-in-Aid for JSPS Fellows, a Grant-in-Aid for Research Activity Start-up, the NIMS Nanofabrication Platform of the Nanotechnology Platform Project, and the Nanotechnology Platform (Project No. 12024046), which is funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), The Thermal & Electric Energy Technology Foundation, and the Advanced Research Program for Energy and Environmental Technologies of the New Energy and Industrial Technology Development Organization (NEDO), Japan. Part of this work was conducted at the AIST Nano-Processing Facility, supported by the “Nanotechnology Platform Program” of MEXT, Japan.

References

  1. 1.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, G. Samsonidze, and G. Dresselhaus, Mater. Sci. Eng., C 23, 129 (2003).CrossRefGoogle Scholar
  3. 3.
    Y.-M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  4. 4.
    J. Heremans and C.M. Thrush, Phys. Rev. B 59, 12579 (1999).CrossRefGoogle Scholar
  5. 5.
    T.E. Huber and M.J. Graf, Phys. Rev. B 60, 16880 (1999).CrossRefGoogle Scholar
  6. 6.
    K. Liu, C.L. Chien, and P.C. Searson, Phys. Rev. B 58, 14681 (1998).CrossRefGoogle Scholar
  7. 7.
    Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, and J.P. Heremans, Appl. Phys. Lett. 76, 3944 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).CrossRefGoogle Scholar
  9. 9.
    T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).CrossRefGoogle Scholar
  10. 10.
    S.H. Choi, K.L. Wang, M.S. Leung, G.W. Stupian, N. Presser, B.A. Morgan, R.E. Robertson, M. Abraham, E.E. King, M.B. Tueling, S.W. Chung, J.R. Heath, S.L. Cho, and J.B. Ketterson, J. Vac. Sci. Technol., A 18, 1326 (2000).CrossRefGoogle Scholar
  11. 11.
    W. Shim, J. Ham, K. Lee, W. Jeung, M. Johnson, and W. Lee, Nano Lett. 9, 18 (2009).CrossRefGoogle Scholar
  12. 12.
    S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J.-P. Minet, and J.-P. Issi, Nanotechnology 13, 653 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1536 (2010).CrossRefGoogle Scholar
  15. 15.
    F. Tsunemi, M. Murata, Y. Saito, K. Shirota, Y. Hasegawa, and T. Komine, Appl. Phys. Exp. 6, 045002 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Murata, Y. Hasegawa, T. Komine, and T. Kobayashi, Nanoscale Res. Lett. 7, 505 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Murata, H. Yamamoto, F. Tsunemi, Y. Hasegawa, and T. Komine, J. Electron. Mater. 41, 1442 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Murata, F. Tsunemi, Y. Saito, K. Shirota, K. Fujiwara, Y. Hasegawa, and T. Komine, J. Electron. Mater. 42, 2143 (2013).CrossRefGoogle Scholar
  19. 19.
    M. Murata and Y. Hasegawa, Nanoscale Res. Lett. 8, 400 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  21. 21.
    C.F. Gallo, B.S. Chandrasekher, and P.H. Shutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
  22. 22.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Masayuki Murata
    • 1
  • Atsushi Yamamoto
    • 1
  • Yasuhiro Hasegawa
    • 2
  • Takashi Komine
    • 3
  1. 1.IECONational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Faculty of EngineeringSaitama UniversitySakuraJapan
  3. 3.Faculty of EngineeringIbaraki UniversityHitachiJapan

Personalised recommendations