Advertisement

Journal of Electronic Materials

, Volume 46, Issue 5, pp 2778–2781 | Cite as

On the Heat Capacity of Cu2Se

  • L. P. Bulat
  • D. A. Pshenay-SeverinEmail author
  • A. A. Ivanov
  • V. B. Osvenskii
  • Yu. N. Parkhomenko
Article

Abstract

Copper selenide is a promising thermoelectric material. One of the reasons for its high efficiency is its low thermal conductivity that can be connected with the decrease of heat capacity with temperature. The possibility of the decrease of heat capacity with the increase of temperature in this material can be connected with the liquid-like behavior of copper ions. In order to reveal the influence of this factor, measurements of constant pressure heat capacity c p and calculations of constant volume heat capacity c V were performed for cubic β-Cu2Se at temperatures T = 450–1000 K. Both calculations and measurements made in the present work demonstrate only a small decrease of heat capacity with temperature. The temperature dependence of c p reasonably correlates with the literature data. But, c V values showed a similar trend only up to 770 K; at higher temperatures, the values obtained previously by other authors are considerably smaller. As the diffusion of copper atoms was taken into account in our calculations, the comparison suggests that small c V values obtained at T > 770 K previously are connected mainly with large thermal expansion of Cu2Se in this temperature range.

Keywords

Heat capacity thermoelectric materials copper selenide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. 11, 422 (2012).CrossRefGoogle Scholar
  2. 2.
    B. Yu, W. Liu, Sh. Chen, H. Wang, H. Wang, G. Chen, and Zh. Ren, Nano Energy 1, 472 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Frenkel, Kinetic Theory of Liquids, ed. R.H. Fowler, P. Kapitza, and N.F. Mott (Oxford: Oxford University Press, 1947), pp. 188–249.Google Scholar
  4. 4.
    H. Kim, S. Ballikaya, H. Chi, J.-P. Ahn, K. Ahn, C. Uher, and M. Kaviany, Acta Mater. 86, 247 (2015).CrossRefGoogle Scholar
  5. 5.
    Springer Materials. Thermodynamic Properties of Compounds, CuS to ErF3. Landolt-Börnstein—Group IV Physical Chemistry 19 A3 (Springer, Berlin, 2000). http://materials.sp ringer.com/lb/docs/sm_lbs_978-3-540-46702-1_10. Accessed 12 November 2015
  6. 6.
    A.S. Pashinkin, M.S. Mikhailova, and V.A. Fedorov, Inorg. Mater. 51, 1090 (2015).CrossRefGoogle Scholar
  7. 7.
    K. Trachenko, Phys. Rev. B 78, 104201 (2008).CrossRefGoogle Scholar
  8. 8.
    M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (New York: Oxford University Press, 1991).Google Scholar
  9. 9.
    J.R.D. Copley and J.M. Rowe, Phys. Rev. Lett. 32, 49 (1974).CrossRefGoogle Scholar
  10. 10.
    W.-C. Pilgrim, S. Hosokawa, H. Saggau, H. Sinn, and E. Burkel, J. Non-Cryst. Solids 250–252, 96 (1999).CrossRefGoogle Scholar
  11. 11.
    A.S. Danilkin, M. Yethiraj, and G.J. Kearley, J. Phys. Soc. Jpn. 79, 25 (2010).CrossRefGoogle Scholar
  12. 12.
    O. Hellman, I.A. Abrikosov, and S.I. Simak, Phys. Rev. B 84, 180301 (2011).CrossRefGoogle Scholar
  13. 13.
    O. Hellman, P. Steneteg, I.A. Abrikosov, and S.I. Simak, Phys. Rev. B 87, 104111 (2013).CrossRefGoogle Scholar
  14. 14.
    M.T. Dove, Introduction to Lattice Dynamics (New York: Cambridge University Press, 1993).CrossRefGoogle Scholar
  15. 15.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, Ch Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle Scholar
  16. 16.
    L. Gulay, M. Daszkiewicz, O. Strok, and A. Pietraszko, Chem. Metals Alloys 4, 200 (2011).Google Scholar
  17. 17.
    T. Kanashiro, N. Ohto, M. Satoh, K. Okamoto, A. Kojima, and F. Akao, Solid State Ionics 3/4, 327 (1981).CrossRefGoogle Scholar
  18. 18.
    A.A. Sirusi, S. Ballikaya, C. Uher, and J.H.J. Ross, J. Phys. Chem. C 119, 20293 (2015).CrossRefGoogle Scholar
  19. 19.
    M.A. Korzhuev, Sov. Phys. Solid State 31, 25 (1989).Google Scholar
  20. 20.
    J.M. Soler, E. Artacho, J. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • L. P. Bulat
    • 1
  • D. A. Pshenay-Severin
    • 1
    • 2
    Email author
  • A. A. Ivanov
    • 3
  • V. B. Osvenskii
    • 3
  • Yu. N. Parkhomenko
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.GIREDMET Ltd.MoscowRussia

Personalised recommendations