Advertisement

Journal of Electronic Materials

, Volume 46, Issue 1, pp 497–501 | Cite as

Optimization of Al2O3 and Li3BO3 Content as Sintering Additives of Li7−x La2.95Ca0.05ZrTaO12 at Low Temperature

  • Nataly Carolina Rosero-Navarro
  • Akira Miura
  • Mikio Higuchi
  • Kiyoharu Tadanaga
Article

Abstract

Simultaneous effect of Al2O3 and Li3BO3 additions on sintering behavior and Li-ion conductivity of Li7−x La2.95Ca0.05ZrTaO12 (LLCZT) garnet electrolyte sintered at 900°C (10 h) is evaluated. The crystal phase and microstructure of the different composites were evaluated by x-ray diffraction and scanning electron microscopy (SEM), respectively. Electrical properties of the composites with high relative densities (95%) were examined by impedance spectroscopy. The cubic phase was formed for LLCZT sintered with 0–0.21 mol of Al2O3 and 0.70 mol–0.80 mol of Li3BO3. The excess of Al2O3 (0.22 mol) led to the formation of secondary phases. SEM observation revealed the good interconnection between LLCZT grains and the distribution of the glassy phase formed by Li3BO3 and Al2O3. Effective combination of 0.21 mol of Al2O3 and 0.80 mol of Li3BO3 produced denser material with high relative density of 95% and high Li-ion conduction of 1 × 10−4 S/cm at 32°C.

Keywords

Ca–Ta doped LLZ sintering additives Al2O3 Li3BO3 Li ion conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, Chem. Rev. 116, 140 (2016).CrossRefGoogle Scholar
  2. 2.
    V. Thangadurai, S. Narayanan, and D. Pinzaru, Chem. Soc. Rev. 43, 4714 (2014).CrossRefGoogle Scholar
  3. 3.
    R. Murugan, V. Thangadurai, and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Ohta, T. Kobayashi, and T. Asaoka, J. Power Sources 196, 3342 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. Li, J.T. Han, C.A. Wang, H. Xie, and J.B. Goodenough, J. Mater. Chem. 22, 15357 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, J. Power Sources 240, 18 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Narayanan, V. Epp, M. Wilkening, and V. Thangadurai, RSC Adv. 2, 2553 (2012).CrossRefGoogle Scholar
  8. 8.
    C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, Inorg. Chem. 50, 1089 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Jin and P.J. McGinn, J. Power Sources 196, 8683 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Kumazaki, Y. Iriyama, K.H. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hirayama, and Z. Ogumi, Electrochem. Commun. 13, 509 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Düvel, A. Kuhn, L. Robben, M. Wilkening, and P. Heitjans, J. Phys. Chem. C 116, 15192 (2012).CrossRefGoogle Scholar
  12. 12.
    H. Buschmann, S. Berendts, B. Mogwitz, and J. Janek, J. Power Sources 206, 236 (2012).CrossRefGoogle Scholar
  13. 13.
    Y. Li, Y. Cao, and X. Guo, Solid State Ion. 253, 76 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi, and M. Tatsumisago, Electrochem. Commun. 33, 51 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, J. Power Sources 265, 40 (2014).CrossRefGoogle Scholar
  16. 16.
    N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, RSC Adv. 4, 51228 (2014).CrossRefGoogle Scholar
  17. 17.
    N. Janani, S. Ramakumar, S. Kannan, and R. Murugan, J. Am. Ceram. Soc. 98, 2039 (2015).CrossRefGoogle Scholar
  18. 18.
    N.C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, Solid State Ion. 285, 6 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Sakamoto, E. Rangasamy, H. Kim, Y. Kim, and J. Wolfenstine, Nanotechnology 24, 424005 (2013).CrossRefGoogle Scholar
  20. 20.
    E. Rangasamy, J. Wolfenstine, and J. Sakamoto, Solid State Ion. 206, 28 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Division of Applied Chemistry, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations