Journal of Electronic Materials

, Volume 46, Issue 1, pp 175–181 | Cite as

Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

  • I. S. Virt
  • I. O. Rudyi
  • I. Ye. Lopatynskyi
  • Yu. Dubov
  • Y. Tur
  • E. Lusakowska
  • G. LukaEmail author
Open Access


Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.


Lead chalcogenides film structure pulsed laser deposition 


  1. 1.
    B. Weng, J. Qiu, L. Zhao, Z. Yuan, C. Chang, and Z. Shi, Proc. SPIE 8993, 899311 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Wang, T. Zens, J. Hu, P. Becla, A.M. Agarwal, and L.C. Kimerling, Proc. SPIE 8034, 80340K (2011).CrossRefGoogle Scholar
  3. 3.
    V. Kasiyan, Z. Dashevsky, C.M. Schwarz, M. Shatkhin, E. Flitsiyan, L. Chernyak, and D. Khokhlov, J. Appl. Phys. 112, 086101 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Sierra, M.C. Torquemada, G. Vergara, M.T. Rodrigo, C. Gutiérrez, G. Pérez, I. Génova, I. Catalán, L.J. Gómez, V. Villamayor, M. álvarez, D. Fernández, M.T. Magaz, and R.M. Almazán, Sens. Actuators B 190, 464 (2014).CrossRefGoogle Scholar
  5. 5.
    M.C. Torquemada, V. Villamayor, L.J. Gómez, G. Vergara, M.T. Rodrigo, G. Pérez, I. Génova, I. Catalán, D. Fernández, R.M. Almazán, M. álvarez, C. Sierra, C.M. Gutiérrez, M.T. Magaz, and J. Plaza, Sens. Actuators A 199, 297 (2013).CrossRefGoogle Scholar
  6. 6.
    B. Weng, J. Qiu, L. Zhao, C. Chang, and Z. Shi, Appl. Phys. Lett. 104, 121111 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Wang, J. Hu, P. Becla, A.M. Agarwal, and L.C. Kimerling, J. Appl. Phys. 110, 083719 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Kouissa, A. Djemel, M.S. Aida, and M.A. Djouadi, Sens. Transducers 193, 106 (2015).Google Scholar
  9. 9.
    YuI Ravich, B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides (New York: Plenum Press, 1970).CrossRefGoogle Scholar
  10. 10.
    I.O. Rudyi, I.V. Kurilo, M.S. Frugynskyj, M. Kuzma, J. Zawislak, and I.S. Virt, Appl. Surf. Sci. 154–155, 206 (2000).Google Scholar
  11. 11.
    I.S. Virt, T.P. Shkumbatyuk, I.V. Kurilo, I.O. Rudyi, T. Ye, Lopatynskyi, L.F. Linnik, V.V. Tetyorkin, and A.G. Phedorov, Semiconductors 44, 544 (2010).CrossRefGoogle Scholar
  12. 12.
    I.S. Virt, I.O. Rudyj, I.V. Kurilo, I.Y. Lopatynskyi, L.F. Linnik, V.V. Tetyorkin, P. Potera, and G. Luka, Semiconductors 47, 997 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Singh and S. Basu, Surf. Coat. Technol. 201, 952 (2006).CrossRefGoogle Scholar
  14. 14.
    T. Itoh and N. Yamauchi, Appl. Surf. Sci. 253, 6196 (2007).CrossRefGoogle Scholar
  15. 15.
    I.S. Virt, Y. Tur, I.O. Rudyi, I.Y. Lopatynskyi, M.S. Frugynskyi, I.V. Kurilo, E. Lusakowska, B.S. Witkowski, and G. Luka, J. Cryst. Growth 432, 19 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Sun, K. Gao, X. Pang, H. Yang, and A.A. Volinsky, Appl. Surf. Sci. 356, 978 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Prabahar, N. Suryanarayanan, K. Rajasekar, and S. Srikanth, Chalcogenide Lett. 6, 203 (2009).Google Scholar
  18. 18.
    J. Qiu, B. Weng, Z. Yuan, and Z. Shi, J. Appl. Phys. 113, 103102 (2013).CrossRefGoogle Scholar
  19. 19.
    H.C. Casey Jr. and M.B. Panish, Heterostructure Lasers. Part B: Materials and Operating Characteristics (Academic Press, New York, 1978)Google Scholar
  20. 20.
    A. Bali, R. Chetty, R.C. Mallik, and A.I.P. Conf, Proc. 1591, 1118 (2014).Google Scholar
  21. 21.
    E. Wintersberger, N. Hrauda, D. Kriegner, M. Keplinger, G. Springholz, J. Stangl, G. Bauer, J. Oswald, T. Belytschko, C. Deiter, F. Bertram, and O.H. Seeck, Appl. Phys. Lett. 96, 131905 (2010).CrossRefGoogle Scholar
  22. 22.
    W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed. (Hoboken: Wiley, 2014).Google Scholar
  23. 23.
    D.G. Stearns, P.B. Mirkarimi, and E. Spiller, Thin Solid Films 446, 37 (2004).CrossRefGoogle Scholar
  24. 24.
    W.M. Tong and R.S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994).CrossRefGoogle Scholar
  25. 25.
    W.-F. Li, Ch-M Fang, M. Dijkstra, and M.A. van Huis, J. Phys.: Condens. Matter 27, 355801 (2015).Google Scholar
  26. 26.
    W.H. Strehlow and E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • I. S. Virt
    • 1
    • 2
  • I. O. Rudyi
    • 3
  • I. Ye. Lopatynskyi
    • 3
  • Yu. Dubov
    • 4
  • Y. Tur
    • 1
  • E. Lusakowska
    • 5
  • G. Luka
    • 5
    Email author
  1. 1.Drogobych State Pedagogical UniversityDrogobychUkraine
  2. 2.University of RzeszowRzeszowPoland
  3. 3.Lviv PolytechnicNational UniversityLvivUkraine
  4. 4.Ivan Franko Lviv National UniversityLvivUkraine
  5. 5.Institute of Physics PASWarsawPoland

Personalised recommendations