Journal of Electronic Materials

, Volume 45, Issue 12, pp 6052–6058 | Cite as

Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3

  • Nader Farahi
  • Sagar Prabhudev
  • Matthieu Bugnet
  • Gianluigi A. Botton
  • James R. Salvador
  • Holger Kleinke


The effect of silicon carbide (SiC) nanoparticles on the thermoelectric properties of Mg2Si0.676Ge0.3Bi0.024 was investigated. Increasing the concentration of SiC nanoparticles systematically reduces the electrical conductivity from 431 Ω−1 cm−1 for the pristine sample to 370 Ω−1 cm−1 for the sample with 1.5 wt.% SiC at 773 K, while enhancing the Seebeck coefficient from −202 μV K−1 to −215 μV K−1 at 773 K. In spite of the high thermal conductivity of SiC, its additions could successfully decrease the lattice thermal conductivity from 3.2 W m−1 K−1 to 2.7 W m−1 K−1 at 323 K, presumably by adding more interfaces. The Z contrast transmission electron microscopy imaging (Z = atomic number) and energy dispersive x-ray spectroscopy revealed bismuth segregation at the grain boundary. In summary, the figure of merit reached its maximum value of 0.75 at 773 K for the sample containing 0.5 wt.% SiC.


Magnesium silicide silicon carbide thermoelectrics nanocomposites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2016_4892_MOESM1_ESM.pdf (259 kb)
Figures S1–S7 and Tables S1–S2: Powder X-ray diffraction patterns of Mg2Si0.676Ge0.3Bi0.024 samples. Density and specific heat of the nanocomposites. SEM images of SiC rich region within the Mg2Si0.676Ge0.3Bi0.024 matrix. Line profile from grain boundary to bulk. Thermal diffusivity of all samples. Calculated Lorenz numbers between 300 K and 800 K. Power factor comparison of two bars obtained from the Mg2Si0.676Ge0.3Bi0.024/0.5% SiC composite (PDF 259 kb)


  1. 1.
    R.R. Furlong and E.J. Wahlquist, Nucl. News 42, 26 (1999).Google Scholar
  2. 2.
    J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Matsumoto, M. Mori, T. Haraguchi, M. Ohtani, T. Kubo, K. Matsumoto, and H. Matsuda, SAE Int. J. Engines 8, 1815 (2015).Google Scholar
  4. 4.
    M.V. Vedernikov and E.K. Iordanishvili, in Seventeenth International Conference on Thermoelectronics. Proceedings of ICT98 IEEE (1998), pp. 37–42Google Scholar
  5. 5.
    S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Satyala and D. Vashaee, J. Electron. Mater. 41, 1785 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Farahi, S. Prabhudev, G. Botton, J. Zhao, J.S. Tse, Z. Liu, J.R. Salvador, and H. Kleinke, J. Alloys Compd. 644, 249 (2015).CrossRefGoogle Scholar
  9. 9.
    S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.-P. Fleurial, J. Mater. Chem. 21, 12259 (2011).CrossRefGoogle Scholar
  10. 10.
    S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).CrossRefGoogle Scholar
  12. 12.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  13. 13.
    D. Cederkrantz, N. Farahi, K.A. Borup, B.B. Iversen, M. Nygren, and A.E.C. Palmqvist, J. Appl. Phys. 111, 023701 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N.D. Browning, and S.M. Kauzlarich, J. Mater. Chem. 22, 24805 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio, J. Solid State Chem. 193, 142 (2012).CrossRefGoogle Scholar
  16. 16.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  17. 17.
    G.A. Slack, J. Appl. Phys. 35, 3460 (1964).CrossRefGoogle Scholar
  18. 18.
    D.-W. Liu, J.-F. Li, C. Chen, and B.-P. Zhang, J. Electron. Mater. 40, 992 (2010).CrossRefGoogle Scholar
  19. 19.
    J.-F. Li and J. Liu, Phys. Status Solidi 203, 3768 (2006).CrossRefGoogle Scholar
  20. 20.
    N. Farahi, S. Prabhudev, M. Bugnet, G. Botton, J. Zhao, J.S. Tse, J.R. Salvador, and H. Kleinke, RSC Adv. 5, 65328 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Ikeda, L. Haviez, Y. Li, and G.J. Snyder, Small 8, 2350 (2012).CrossRefGoogle Scholar
  22. 22.
    N. Nandihalli, S. Gorsse, and H. Kleinke, J. Solid State Chem. 226, 164 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, and G.J. Snyder, Adv. Energy Mater. 5, 1401391 (2015).CrossRefGoogle Scholar
  24. 24.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  25. 25.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
  26. 26.
    D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).CrossRefGoogle Scholar
  27. 27.
    X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su, J. Sakamoto, and C. Uher, J. Mater. Chem. 22, 2958 (2012).CrossRefGoogle Scholar
  28. 28.
    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Nader Farahi
    • 1
  • Sagar Prabhudev
    • 2
  • Matthieu Bugnet
    • 2
  • Gianluigi A. Botton
    • 2
  • James R. Salvador
    • 3
  • Holger Kleinke
    • 1
  1. 1.Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada
  2. 2.Materials Science and Engineering DepartmentMcMaster UniversityHamiltonCanada
  3. 3.General Motors Research and Development CenterWarrenUSA

Personalised recommendations