Journal of Electronic Materials

, Volume 45, Issue 11, pp 5526–5532 | Cite as

Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

  • Sudeep J. Pandey
  • Giri Joshi
  • Shidong Wang
  • Stefano Curtarolo
  • Romain M. Gaume
Article

Abstract

Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

Keywords

Thermoelectrics nanoceramics magnéli phase small polaron Ti5O9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014).CrossRefGoogle Scholar
  2. 2.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature (London) 508, 373 (2014).CrossRefGoogle Scholar
  3. 3.
    J. He, Y.F. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Harada, K. Tanaka, and H. Inui, J. Appl. Phys. 108, 083703 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Curtarolo, A Distributed Materials Properties Repository from High-throughput ab initio Calculation (Aflowlib.org, 2016), http://aflowlib.org/material.php?id= 31399. Accessed 27 May 2016.
  6. 6.
    Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, Appl. Phys. Lett. 91, 052505 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Lu, M. Hirohashi, and K. Sato, Mater. Trans. 47, 1449 (2006).CrossRefGoogle Scholar
  8. 8.
    Y. Lu, Y. Matsuda, K. Sagara, L. Hao, T. Otomitsu, and H. Yoshida, Adv. Mater. Res. 415–417, 1291 (2011).Google Scholar
  9. 9.
    Y. Lu, K. Sagara, L. Hao, Z. Ji, and H. Yoshida, Mater. Trans. 53, 1208 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Backhaus-Ricoult, J.R. Rustad, D. Vargheese, I. Dutta, and K. Work, J. Electron. Mater. 41, 1636 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Mikami and K. Ozaki, In J. Phys.: Conf. Ser., 012006 (2012).Google Scholar
  12. 12.
    D. Portehault, V. Maneeratana, C. Candolfi, N. Oeschler, I. Veremchuk, Y. Grin, C. Sanchez, and M. Antonietti, ACS Nano 5, 9052 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, and J. Brown, Appl. Phys. A 116, 433 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Adv. Mater. Res. 415, 1291 (2012).Google Scholar
  15. 15.
    S. Roessler, R. Zimmermann, D. Scharnweber, C. Werner, and H. Worch, Colloids Surf. B 26, 387 (2002).CrossRefGoogle Scholar
  16. 16.
    A.J. Bosman and H.J. van Daal, Adv. Phys. 19, 1 (1970).CrossRefGoogle Scholar
  17. 17.
    N. Tsuda, Electronic Conduction in Oxides (New York: Springer, 2000).CrossRefGoogle Scholar
  18. 18.
    A. Banerjee, S. Pal, E. Rozenberg, and B.K. Chaudhuri, J. Phys. 13, 9489 (2001).Google Scholar
  19. 19.
    S.B. Lisesivdin, A. Yildiz, M. Kasap, and D. Mardare, Phys. B 398, 305 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Heluani, D. Comedi, M. Villafuerte, and G. Juarez, Phys. B 398, 305 (2007).CrossRefGoogle Scholar
  21. 21.
    C. Sanchez, M. Henry, J. Grenet, and J. Livage, J. Phys. C: Solid State Phys. 15, 7133 (1982).CrossRefGoogle Scholar
  22. 22.
    L. Yan and H. Chen, J. Chem. Theory Comput. 10, 4995 (2014).CrossRefGoogle Scholar
  23. 23.
    N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford: OUP, 2012).Google Scholar
  24. 24.
    J. Schnakenberg, Phys. Status Solidi 28, 623 (1968).CrossRefGoogle Scholar
  25. 25.
    S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).CrossRefGoogle Scholar
  26. 26.
    J. Lago, P. Battle, M. Rosseinsky, A. Coldea, and J. Singleton, J. Phys. 15, 6817 (2003).Google Scholar
  27. 27.
    Y. Sun, X. Xu, and Y. Zhang, J. Phys.: Condens. Matter 12, 10475 (2000).Google Scholar
  28. 28.
    I. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
  29. 29.
    A. Yildiz, S.B. Lisesivdin, M. Kasap, and D. Mardare, Phys. B 404, 1423 (2009).CrossRefGoogle Scholar
  30. 30.
    C.W.a.D. Emin, Physical Review B 1984, vol. 29, pp. 4582-4587.Google Scholar
  31. 31.
    P. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).CrossRefGoogle Scholar
  32. 32.
    E. Stoyanov, F. Langenhorst, and G. Steinle-Neumann, Am. Miner. 92, 577 (2007).CrossRefGoogle Scholar
  33. 33.
    V.M. Khomenko, K. Langer, H. Rager, and A. Fett, Phys. Chem. Miner. 25, 338 (1998).CrossRefGoogle Scholar
  34. 34.
    G.S. Kumar, G. Prasad, and R.O. Pohl, J. Mater. Sci. 28, 4261 (1993).CrossRefGoogle Scholar
  35. 35.
    C. Wood, Rep. Prog. Phys. 51, 459 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Sudeep J. Pandey
    • 1
  • Giri Joshi
    • 2
  • Shidong Wang
    • 3
  • Stefano Curtarolo
    • 3
  • Romain M. Gaume
    • 4
    • 5
    • 6
  1. 1.Department of PhysicsUniversity of Central FloridaOrlandoUSA
  2. 2.Evident ThermoelectricsTroyUSA
  3. 3.Department of Material Science and EngineeringDuke UniversityDurhamUSA
  4. 4.College of Optics and Photonics, CREOLUniversity of Central FloridaOrlandoUSA
  5. 5.Department of Material Science and EngineeringUniversity of Central FloridaOrlandoUSA
  6. 6.NanoScience Technology CenterUniversity of Central FloridaOrlandoUSA

Personalised recommendations